智能材料,又称响应性材料,具有可根据环境变化而动态改变的特性。在化学工程领域,这些材料在革新工艺、提高效率和实现新应用方面发挥着关键作用。智能材料涵盖了一系列具有独特特性的物质,这些物质可以以受控方式进行操控。这些材料对温度、pH、光、电场或磁场、机械应力和化学成分等外部刺激表现出响应性。例如,形状记忆合金、水凝胶、压电材料和刺激响应性聚合物 [1, 2]。
强大的TopCon细胞本质上是敏感的 - 因此,在我们最先进的制造过程中,我们用热冰的玻璃将它们包裹在两侧。这使我们的玻璃玻璃模块比传统的玻璃框模块更加健壮。有了这种保护,由冰雹,恶劣的天气或雪引起的机械应力不会导致微裂纹,并且细胞通常不容易受到损害。蒸汽和其他高度侵略性剂(例如盐喷雾剂或氨)也无法穿透玻璃。并且由于玻璃的实际年龄并不像其他材料那样年龄,所以即使是时间本身也很难造成损失。玻璃衬里模块
用于 MEMS 封装的高柔性芯片粘接粘合剂 Dr. Tobias Königer DELO 工业粘合剂 DELO-Allee 1 86949 Windach,德国 电话 +49 8193 9900-365 传真 +49 8193 9900-5365 电子邮件 tobias.koeniger@delo.de 摘要 大多数 MEMS 封装的芯片粘接材料必须具有高柔性,因为在装配过程和应用过程中的温度变化可能导致热机械应力,这是由于基板、芯片和粘合剂的热膨胀系数不同造成的。热机械应力会导致对应力极为敏感的 MEMS 设备的信号特性失真。在本文中,我们开发了高柔性热固化粘合剂,其杨氏模量在室温下低至 5 MPa (0.725 ksi)。 DMTA 测量表明,在 +120 °C (+248 °F) 温度下储存不会导致粘合剂脆化,而脆化会对 MEMS 封装的可靠性产生负面影响。在 +120 °C (+248 °F) 下储存长达 1000 小时后,杨氏模量没有增加。粘合剂在低至 +100 °C (+212 °F) 的极低温度下固化,从而减少了组装过程中的应力产生。此外,粘合剂具有非常友好的工艺特性。处理时间可以达到一周以上。双重固化选项可在几秒钟内对芯片进行初步光固定。关键词粘合剂、MEMS 封装、应力、芯片粘接、粘合
引言对储能解决方案的越来越多的需求刺激了对高性能,持久和低成本电池的需求,并且固态电池(ASSB)作为锂离子电池的有前途的替代品,由于其安全性和高能密度的潜力[1]。ASSB通过锂离子在阳极和阴极之间通过固体电解质的运动运行,通过消除与液体电解质相关的泄漏和挥发性风险来增强安全性和能量密度[2]。该项目的研究重点是通过了解细胞内的降解机制和机械应力来提高性能,利用多物理学模型和压力分析来优化其寿命,效率和安全性。
随着温度的变化,样品中会产生应力,以防止自由样品弯曲。对于弯曲样品,在增加受力样品的加热速率下没有应力梯度( = 0),导致应力梯度值增加。将数据与在均匀温度场和 20 至 1100°C 的加热速率下获得的膨胀仪结果进行了比较。关键词:隔热罩、航天器、再入、复合材料、高温、玻璃纤维、膨胀仪。介绍用于飞机和航空航天技术的隔热材料 (TSM) 是在极端负载下运行的物体的经典例子。极端条件由温度、作用的机械应力以及外部介质的化学侵蚀程度、强辐射、磨料侵蚀作用等定义。
使用压电设备从空调冷凝器中收集能量 摘要 使用校园内的几台空调机组来确定空调冷凝器机组中潜在的废能来源,并设计了能量收集方法。这些能量收集方法称为使用压电设备的振动和气流驱动能量收集。目标是从排气流中产生电能(类似于喷气发动机的加力燃烧器,但规模要小得多)。对于压电设备,想法是使设备振动以产生电能。工程技术课程的学生和教师研究了空调机组,以确定潜在的废能来源。根据季节、振动水平和冷凝器的排气扇流量进行测量以确定运行时间。进行了测量,并与计算出的从冷凝器中获取的潜在功率进行了比较。这个本科研究项目是全校范围内为促进节能和研究使用清洁可再生能源而开展的几项工作之一。简介 压电性一词源于希腊语 piezein ,意思是挤压和按压。直接效应和逆效应是两种压电效应。在直接效应中,电荷由机械应力产生。在逆效应中,施加电场会产生机械运动。压电能量收集利用直接效应,k p 、k 33 、d 33 、d 31 、g 33 是压电材料特性的特征。k 因子,称为压电耦合因子,是方便直接测量机电效应整体强度的典型方法 [1-4]。压电能量收集是一种通过应变压电材料将机械能转化为电能的方法 [5]。压电材料的应变或变形会导致整个设备中的电荷分离,产生电场并导致与施加的应力成比例的电压降。振荡系统通常是悬臂梁结构,在杠杆的未连接端有一个质量,因为它为给定的输入力提供更高的应变 [6]。产生的电压随时间和应变而变化,平均而言有效地产生不规则的交流信号。压电能量转换产生的电压和功率密度水平比电磁系统相对较高。此外,压电效应能够从机械应力中产生晶体和某些类型陶瓷等元素的电势 [7]。如果压电材料未短路,则施加的机械应力会在材料上产生电压。用于清除振动能量的最常见设备类型是悬臂压电设备,它通过弯曲、摇晃和变形来发电 [8]。有许多基于压电材料的应用,例如电动打火机。在这个系统中,按下按钮会导致弹簧锤击中压电晶体,产生的高电压会跨越小火花间隙,从而点燃可燃气体。按照同样的想法,便携式打火机用于点燃燃气烤架和炉灶,以及各种
本目录中的信息基于 Techné 在过去十年中对密封件和其他橡胶部件的开发和制造研究所获得的经验。它代表了我们目前的知识和技术水平。本目录中密封件的密封性能不仅取决于部件本身,还取决于其他参数,例如施加的压力、接触面积、工作温度、机械应力、要密封的介质以及任何类型的外部污垢。由于参数数量众多,因此无法对本目录中产品的功能做出一般性陈述。本目录中的信息仅代表推荐值,并非适用于所有应用,因此我们建议您与我们联系。在高负载或特殊负载的情况下,我们强烈建议联系我们的技术部门。此外,进行检查试验以确认密封系统功能良好也是必不可少的。
使用压电设备从空调冷凝器中收集能量 摘要 使用校园内的几台空调机组来确定空调冷凝器机组中潜在的废能来源,并设计了能量收集方法。这些能量收集方法称为使用压电设备的振动和气流驱动能量收集。目标是从排气流中产生电能(类似于喷气发动机的加力燃烧器,但规模要小得多)。对于压电设备,想法是使设备振动以产生电能。工程技术课程的学生和教师研究了空调机组,以确定潜在的废能来源。根据季节、振动水平和冷凝器的排气扇流量进行测量以确定运行时间。进行了测量,并与计算出的从冷凝器中获取的潜在功率进行了比较。这个本科研究项目是全校范围内为促进节能和研究使用清洁可再生能源而开展的几项工作之一。简介 压电性一词源于希腊语 piezein ,意思是挤压和按压。直接效应和逆效应是两种压电效应。在直接效应中,电荷由机械应力产生。在逆效应中,施加电场会产生机械运动。压电能量收集利用直接效应,k p 、k 33 、d 33 、d 31 、g 33 是压电材料特性的特征。k 因子,称为压电耦合因子,是方便直接测量机电效应整体强度的典型方法 [1-4]。压电能量收集是一种通过应变压电材料将机械能转化为电能的方法 [5]。压电材料的应变或变形会导致整个设备中的电荷分离,产生电场并导致与施加的应力成比例的电压降。振荡系统通常是悬臂梁结构,在杠杆的未连接端有一个质量,因为它为给定的输入力提供更高的应变 [6]。产生的电压随时间和应变而变化,平均而言有效地产生不规则的交流信号。压电能量转换产生的电压和功率密度水平比电磁系统相对较高。此外,压电效应能够从机械应力中产生晶体和某些类型陶瓷等元素的电势 [7]。如果压电材料未短路,则施加的机械应力会在材料上产生电压。用于清除振动能量的最常见设备类型是悬臂压电设备,它通过弯曲、摇晃和变形来发电 [8]。有许多基于压电材料的应用,例如电动打火机。在这个系统中,按下按钮会导致弹簧锤击中压电晶体,产生的高电压会跨越小火花间隙,从而点燃可燃气体。按照同样的想法,便携式打火机用于点燃燃气烤架和炉灶,以及各种
原子位移的高阈值能量(Ed)[5]、点缺陷的动态退火[6]以及没有传统的栅极绝缘体[7],这些使得它们在辐射环境中也具有吸引力。GaN HEMT 中故意引起的应力场在整个通道中基本是均匀的。这可能是为什么局部应力的概念尚未在文献中研究的原因。另一个原因可能是局部应力的全局平均值很小;这似乎太小而无法影响任何特性。最后,以纳米级分辨率映射机械应力是一项艰巨的任务。所有这些因素使得 GaN HEMT 文献只能研究均匀应力场的作用。但是,关态偏置可能会在电场周围引起高度局部化的机械应力。[8] 器件制造和设计特征也会产生应力局部化。然而,目前还没有人齐心协力绘制机械应力的空间非均匀性图,以研究其对晶体管特性的影响。常用的实验技术,如悬臂[9]、三点弯曲[10]和四点弯曲[11],都无法捕捉到应力局部化。衬底去除[12,13]也用于产生均匀的弯曲应力。本研究的动机来自应力约束效应提供的识别易受辐射区域的机会。我们假设纳米级约束应力(机械热点)可能决定辐射损伤(甚至是操作性能下降)的特定位置成核。例如,HEMT 的栅极漏电被归因于促进肖特基接触金属化相互扩散的局部应力强度。[14]只有少数研究试图控制固有应力以显示对辐射效应的明显影响。 [15,16] 有必要将这些研究扩展到特定类型的辐射和压力。