摘要:缆索驱动机械手具有手臂细长、运动灵活、刚度可控等特点,在捕获在轨卫星方面有着很大的应用前景,但由于缆索长度、关节角度和反作用力之间的耦合关系,难以实现缆索驱动机械手的有效运动规划和刚度控制。该算法还可以通过动态设置加加速度使加速度更加平滑,减小加速度冲击,保证缆驱动机械手的稳定运动。再次,通过采用基于位置的阻抗控制来补偿驱动缆的位置和速度,进一步优化缆驱动机械手的刚度。最后,开发并测试了变刚度缆驱动机械手样机,利用卷积动态加加速度规划算法规划出所需的速度曲线,进行了缆驱动机械手的速度控制实验,结果验证了该算法可以提高加速度的平滑度,从而使运动更加平滑,减小振动。此外,刚度控制实验验证了缆驱动机械手具有理想的变刚度能力。
摘要 — 在当今的环境中,机械手在军事、国防、医疗和工业领域中发挥着重要作用,即使在烟花制造或炸弹扩散等危险环境中,机械手也可以复制人类的手势来完成任务。本文介绍了一种通过手势识别无线控制机械手运动的突破性方法。通过使用伺服控制、柔性传感器、Arduino Nano 和收发器,收发器捕获的预定义手势可实现用户和机械手之间的无缝实时通信,从而促进远程操作。手势识别技术与机器人技术的这种创新集成为增强人机交互提供了一个令人兴奋的前沿,为无数应用提供了适应性和安全性。
大多数为飞机控制开发的触觉界面都提供触觉支持作为控制机械手上的附加力。本研究重新审视了主动机械手,这是一种不同于现有触觉界面但与之互补的设计理念。该控制装置将飞行员施加在其上的力传送到飞机,同时通过偏转角反馈飞机的旋转速度。研究发现,与传统的被动机械手相比,主动机械手在补偿跟踪任务中大大促进了目标跟踪和干扰抑制。此外,任务性能的更大改进与更高的强制函数带宽相关。这些发现是由于主动机械手将有效受控元件动力学转变为类似积分器的动力学,同时将干扰抑制集成到神经肌肉系统中。然而,在飞机状态反馈中作用于飞机的高频干扰会对主动机械手的操作效率产生不利影响。根据实验结果和被动性理论的结果,设计和评估了一个超前 - 滞后滤波器,它可以减轻这种影响而不影响任务性能。
线性和角航天器动力学。已经针对捕获应用进行了研究,因为潜在的翻滚目标需要经过调整的机械手方法。通过 Giordano 等人 (2018) 提出的工作空间调整策略或 Giordano 等人 (2019) 同时控制全局质心和航天器姿态,已经研究了如何有效使用推进器来补偿机械手运动。同样,当仅控制机械手时,Pisculli 等人 (2015) 开发了反应零空间控制,以减少机械手和航天器底座之间的相互作用。还可以注意到没有考虑底座执行器的情况。更一般地说,轨迹规划被认为可以减少机械手运动和/或外部干扰对底座的影响,至少对于无奇点轨迹而言。Rybus 等人采用了非线性模型预测控制。 (2017) 确保机械手实现优化轨迹,最大限度地减少机械手对卫星的干扰,同样在捕获接近阶段,Lu 和 Yang (2020) 研究了笛卡尔轨迹规划,以最大限度地减少姿态干扰,Seddaoui 和 Saaj (2019) 提出了一种用于燃料消耗优化的无碰撞路径和无奇点路径的通用轨迹规划,同时采用 H ∞ 控制和前馈补偿处理内部和外部扰动。
摘要 本文使用牛顿-欧拉法建立了配备机械臂的六旋翼飞行器的动力学模型,并研究了其稳定性。为了模拟干扰,使用了简化的摆锤法。这种六旋翼飞行器配置以前从未在科学论文中涉及过。所得模型是一个非线性、耦合和欠驱动的动力学模型,其中包括由于六旋翼飞行器配备机械臂而产生的空气动力学效应和干扰。本文的目的是全面研究使用简化摆锤法确定六旋翼飞行器的惯性矩,同时考虑到质量分布和重心变化的影响,这是六旋翼飞行器在空中运动期间机械手连续运动的结果。实验测试是使用 Solid Works 应用程序进行的,并使用 LabVIEW 进行评估,以便全面了解插入到动力学模型中的干扰。整个飞行器模型由四个经典的 PID 控制器驱动,用于控制飞行器的姿态和空间中所需轨迹的高度。这些控制器用于很好地理解如何评估和验证模型,使其成为抗干扰模型,此外,它们还易于设计和快速响应,但它们需要开发才能获得最佳结果。将来,将定义精确的轨迹,
I. 引言 A. 背景与动机 近年来,空中操控引起了机器人研究界的极大兴趣 [1]。多个研究小组展示了使用安装在空中机械手上的夹持器进行空中抓取 [2]–[4]。Lee 和 Kim、Kim 等人展示了协作式空中机械手在有障碍物的环境中抓取未知有效载荷 [5],[6]。Orsag 等人演示了使用四旋翼平台和安装在平台上的双臂执行拾取和钉孔任务 [7]。欧盟第七框架计划资助了几个空中机械手项目,研究空中机械手与环境交互时的运动规划和阻抗控制 [8]–[10]。德国航空航天中心的一个研究小组介绍了安装在直升机上的 7 自由度人形手臂的潜在应用 [11]。类似 Delta 的机构 [12] 和并联机械手 [13] 也被考虑用于空中机械手。这些现有的研究为空中操纵的研究提供了广阔的未来。然而,与地面操纵器相比,空中操纵器能够完成的任务仍处于非常初级的阶段。这是由于许多因素造成的,例如
这是一个简单的演示,您可以和客户玩石头剪刀布。它是在配备 AMD 的 SOM(系统模块)“Kria™ K26 SoM”的“KR260 机器人入门套件”上实现的。 输入:请在USB摄像头前展示“石头、剪刀、布”。 处理:在ROS2(机器人操作系统)下,AI推理处理单元与机械手控制单元应用程序分离,对输入图像进行“手势分类”,输出PWM信号控制机械手。 输出:经过上述处理后,产生以下两个输出。输出1:将“手势分类”的结果输出到显示器。 ⇒ 根据顾客所出的手牌(石头、剪刀、布),通过AI推理,即AI的预测,显示获胜手牌。 输出2:根据处理结果,控制“机械手”中实现的伺服电机,帮助客户获胜。 ⇒ 下面的例子中,视频输入是“石头”,所以“机械手”会变成“布”的形状来获胜。
摘要:假肢的开发和制造是医疗技术发展的重要趋势之一。考虑到现代电子技术和自动化系统的发展及其机动性和紧凑性,实际任务是制造一种假肢,其拟人化特性接近功能齐全的人体肢体,并能够高精度地再现其基本动作。本文分析了电子假肢控制系统开发的主要方向。本文介绍了拟人假肢原型及其控制系统的实际实施描述和结果。我们开发了一种拟人化的多指假手,用于机器人研究和教学应用。设计的机械手是其他已知 3D 打印机械手的低成本替代品,具有 21 个自由度——每个手指 4 个自由度,拇指 3 个自由度,2 个自由度负责机械手在空间中的位置。所展示的机械臂的开源机械设计具有接近人手的质量尺寸和运动参数,具有自主电池操作的可能性,能够连接不同的控制系统,例如计算机、脑电图仪、触摸手套。
摘要 —本文采用带单位反馈的闭环系统中的 PID 控制器来控制机器人机械手。控制器的使用难点在于参数调整,因为调整参数仍然使用试错法来找到 PID 参数常数,即比例增益 (K p )、积分增益 (K i ) 和微分增益 (K d )。在这种情况下,蚁群优化算法 (ACO) 用于寻找 PID 的最佳增益参数。蚂蚁算法是一种组合优化方法,它利用蚂蚁从巢穴到食物所在位置寻找最短路径的模式,该概念应用于通过最小化目标函数来调整 PID 参数,从而使机器人机械手具有改进的性能特征。本研究采用 Matlab Simulink 环境,首先建立系统模型,然后利用蚁群算法确定适当的系数 𝐾 p 、 𝐾 i 和 K d ,以使机器人机械手两个关节的轨迹误差最小化。然后,将这些参数应用于机器人系统。根据计算机仿真结果,与经典 PID 相比,所提出的方法 (ACO-PID) 给出了一个具有良好性能的系统。
2023 年 2 月 - 至今 Gh. 技术大学副教授Asachi” 雅西大学,电气工程、能源和应用信息学学院,str。教授博士副教授 Dimitrie Mangeron 没有。 21-23,雅西(罗马尼亚),工业用途、驱动和自动化系为机械手和工业机器人学科提供课程支持,并为以下学科提供实验室应用:系统理论、机械手和工业机器人、机器人控制算法、系统识别和建模、信号采集和处理系统、生物机械运动控制。活动类型或领域 教育 2018 年 2 月 – 2023 年 2 月 工程负责人 技术大学“Gh. Asachi” 雅西大学,电气工程、能源和应用信息学学院,str。教授博士副教授 Dimitrie Mangeron 没有。 21-23,雅西(罗马尼亚),工业用途、驱动和自动化系为机械手和工业机器人学科提供课程支持,并为以下学科提供实验室应用:系统理论、机械手和工业机器人、机器人控制算法、系统识别和建模、信号采集和处理系统、生物机械运动控制。活动类型或领域 教育 2016 年 2 月 – 2018 年 2 月 助理教授 技术大学“Gh. Asachi” 雅西大学,电气工程、能源和应用信息学学院,str。教授博士副教授 Dimitrie Mangeron 没有。 21-23,雅西(罗马尼亚),工业应用、驱动和自动化系