本文提出了一种基于并联和串联机器人平台的虚拟水下浮动操作系统 (VSFOS)。其开发的主要目的在于以更简单、更安全的方式进行模拟水下操作实验。该 VSFOS 由一个六自由度 (6-DOF) 并联平台、一个 ABB 串联机械手、一个惯性传感器和一个实时工业计算机组成。6-DOF 平台用于模拟水下航行器的运动,其姿态由惯性传感器测量。由实时工业计算机控制的 ABB 机械手作为操作工具执行水下操作任务。在控制系统架构中,开发了软件来接收惯性传感器收集的数据、进行通信和发送指令。此外,该软件还显示机械手的实时状态。为了验证所提出的系统,进行了两项实验来测试其性能。第一个实验主要测试VSFOS的通信功能,第二个实验主要测试机械臂跟随并联平台运动,在空间中执行模拟操作任务,两个实验的结果证明了VSFOS的有效性和性能。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:在施工机械制造领域,机器人臂(RA)的开发非常迅速且广泛使用。许多智能工程RA可以改善工业生产过程,并在物联网传感器的作用下提高生产效率。本文基于无线通信网络和事物技术的组合构建了工程操纵器控制系统,该系统用于控制机械手的操作,调整机械手的握紧姿势,并在工业生产过程中推动操纵器的旋转和操作。但是,传统的态度感应方法效率低下。因此,本文基于欧几里得距离矩阵(EDM)算法构建了工程操纵器的态度传感方法的模型。机器人臂态度感知(AP)的准确性更高。
2020 年 8 月 5 日 — 战术 6 自由度机械手,灵活性高,操作复杂。EOD 任务。主要应用。• CIED、IEOD。• 化学生物放射核 (CBRN)...
在工业机器人系统的数学建模中,Denavit 和 Hartenberg 符号最为重要,因为它提供了一种编写机械手运动方程的标准方法。这对于串联机械手尤其有用,因为串联机械手使用矩阵来表示一个物体相对于另一个物体的姿势(位置和方向)。Jacques Denavit 和 Richard Hartenberg 于 1955 年引入了这一惯例,以标准化空间链接参考系统的坐标。机器人工程系统有助于基于朗肯循环的热电发电系统需要监测由于蒸汽流动导致的管道壁厚减小,这是由于老化过程(例如侵蚀和加速腐蚀过程)造成的。检查困难与恶劣环境(50 o C 和 100% 相对湿度)和具有复杂几何形状的空间有关,例如管道曲线及其支撑结构。这项工作提出了一个监控程序,该程序集成了使用机器人系统和工业 4.0 技术执行的壁厚检查,以处理收集的数据并在整个组织中传播信息。该机器人系统采用“数字孪生”技术开发,这是一种非常逼真的虚拟建模方案,可以与现实世界环境进行交互。它们包括设备和执行检查过程的所有步骤。管壁厚度监测系统将在安格拉 1 号核电站(巴西)使用。
检查、加油、升级、维修或救援卫星,清除轨道碎片,以及建造和维护大型轨道资产和基础设施等要求对于在轨空间基础设施的维护非常重要。到目前为止,所有值得注意的维修任务都是由宇航员舱外活动 (EVA) 在低地球轨道 (LEO) 上执行的。然而,这些操作风险大、成本高、速度慢,有时甚至不可行。EVA 可以被机器人在轨维修 (OOS) 取代,在此期间,任务由空间机械手系统 (SMS) 执行,在文献中也称为追逐者或服务者。它们由一个卫星基座组成,该基座配备一个或多个带有抓钩装置的机器人机械手(臂),并由视觉系统驱动,从而能够捕获目标(客户)卫星。SMS 也可以是安装在空间设施上的大型维修机械手。本研究课题重点关注在轨操纵和捕获,以及与这些活动相关的方面。因此,它包括与刚性和柔性 SMS 的动力学、相关的接触动力学、空间系统的识别方法、监控和控制所需的姿势和状态感测、抓取目标的运动规划方法、运动或交互任务期间的反馈控制方法以及此类系统的地面测试试验台相关的工作。该研究主题包括五篇文章。在《从空气轴承支撑的测试数据估计空间机械手的振动特性》中,李等人从理论和实验上研究了与平面实验测试试验台相关的问题,该试验台使用空气轴承垂直支撑缩放 SMS 并在平面上创建零重力环境。作者指出,空气轴承会影响缩放 SMS 的动力学行为,从而影响其表观关节的刚度和阻尼、固有频率和振动响应。作者提出了一套程序来消除空气轴承的影响,并从电机制动系统的测试数据中识别真实的等效关节刚度和阻尼。识别惯性特性,并使用遗传算法确定等效关节刚度和阻尼。通过消除空气轴承引起的额外惯性,可以估算出机械手的真实振动特性。在《废火箭级在轨机器人抓取:抓取稳定性分析和实验结果》中,Mavrakis 等人研究了废火箭级的抓取,分析了抓取稳定性,并展示了实验结果。提出了一种评估废火箭级机器人抓取稳定性的新方法,该方法基于计算 Apogee Kick Motor 喷嘴的两指抓取的固有刚度矩阵,并将稳定性指标定义为局部接触曲率的函数,材料特性、施加的力和目标质量。稳定性指标是
摘要 我们介绍了 MetaArms,这是一种可穿戴的拟人机械臂和机械手,具有六个自由度,由用户的腿和脚操作。我们的总体研究目标是使用身体重塑方法重新想象我们的身体在可穿戴机器人的帮助下可以做什么。为此,我们提出了一个初步的探索性案例研究。MetaArms 的两个机械臂由用户的脚部运动控制,机械手可以根据用户的脚趾弯曲来抓取物体。用户的脚上还会呈现触觉反馈,与机械手上触摸的物体相关,从而创建一个闭环系统。我们对该系统进行了正式和非正式的评估,前者根据菲茨定律使用 2D 指向任务。据报道,该系统 12 个用户的总吞吐量为 1.01 比特/秒(标准差 0.39)。我们还提供了来自 230 多名用户的非正式反馈。我们发现 MetaArms 证明了身体重塑方法在机器人肢体设计中的可行性,这可能有助于我们重新想象人体可以做什么。
在各种实验环境中,肌电图 (EMG) 信号已用于控制机器人。基于 EMG 的机器人控制需要控制的内在参数,这使得用户很难理解输入协议。当未提供适当的输入时,系统的响应时间会发生变化;因此,无论实际延迟如何,都应调查用户的主观延迟。在本研究中,我们调查了延迟的主观感知对大脑激活的影响。在受试者使用 EMG 信号控制机械手时进行脑部记录,这需要基本的处理延迟。我们使用肌肉协同作用来执行机械手的抓握命令。在通过抓握手来控制机器人后,每次试验都会应用四个额外延迟持续时间(0 毫秒、50 毫秒、125 毫秒和 250 毫秒)之一,并指示受试者回答延迟是自然的、额外的还是他们不确定。我们根据回答(“确定”和“不确定”)比较了大脑活动。我们的结果表明顶叶的 θ 波段存在显著的功率差异,并且这个时间范围包括受试者感觉不到延迟的间隔。我们的研究提供了重要的见解,在构建自适应系统并评估其可用性时应考虑这些见解。
慢性期中风患者的手部功能改善通常在 6 个月内达到平台期。脑机接口 (BCI) 引导的机器人辅助训练已被证明可有效促进慢性中风患者的上肢运动功能恢复。然而,其背后的神经可塑性变化尚不清楚。本研究旨在探讨 20 次 BCI 引导的机器人手训练后全脑神经可塑性的变化,以及这些变化是否能在 6 个月的随访中保持。因此,对 14 名慢性中风患者进行了探讨,探讨了训练前、训练后立即和训练后 6 个月的临床改善和神经系统变化。通过动作研究手臂测试 (ARAT) 和 Fugl-Meyer 上肢评估 (FMA) 评估上肢运动功能,并使用静息态功能性磁共振成像评估神经系统变化。重复测量方差分析表明,FMA(F [2,26] = 6.367,p = 0.006)和 ARAT(F [2,26] = 7.230,p = 0.003)均发现了长期运动改善。基于种子的功能连接分析表明,在同侧运动区域(初级运动皮层和辅助运动区)和对侧区域(辅助运动区、运动前皮层和顶上小叶)之间观察到显著的 FC 调节,并且这种影响在 6 个月后仍然持续。fALFF 分析表明,局部神经元
NEA/RWM/R(2022)1 | 7 图表列表 图 1. (左):1949 年机械主从机械手 (MSM) 装置的报告,由 RC Goertz 在美国阿贡国家实验室设计。 (右):非常相似的装置,如今在世界各地用于核工业中执行的绝大多数远程操作。 24 图 2. AREVA 在放射性环境中部署的 CEA 力敏遥控系统的控制架构。请注意位于人类操作员和输入主设备(左)与从属机械手(右)之间的高度复杂的算法和软件架构。 25 图 3. 自主运动规划器引导机器人激光切割曲面,由 3-D 计算机视觉捕捉。这是机器人首次在放射性环境中自主移动。 26 图 4. 对 RRS 实施中感知到的障碍和担忧的相对重要性进行总结 31 图 5. 对 RRS 实施中感知到的障碍和担忧的总分进行总结 33 图 6. FREMES 传送带通过 HPGE 伽马能谱仪自动对比利时德塞尔的放射性废物进行分类。40