故障排除 ................................................................................................7-12 � 如果无法设置参数......................................................................................................7-12 � 如果电机不运行......................................................................................................7-13 � 如果电机旋转方向相反......................................................................................7-14 � 如果电机不输出转矩或加速缓慢......................................................................7-14 � 如果电机以高于频率参考的速度运行.............................................................7-14 � 如果电机减速缓慢......................................................................................................7-15 � 如果电机过热.............................................................................................................7-15 � 如果 PLC 等外围设备受到启动或运行变频器的影响.............................................................7-16 � 如果在输入运行命令时漏电断路器动作............................................................................7-16 � 如果有机械振动.....................................................................................................7-16 � 如果电机甚至在额定转速下旋转............................................................................................7变频器输出停止时................................................................7-17 � 风扇启动时或风扇停转时检测到 OV(过压)或 OC(过流)时.................................................................................................7-17 � 输出频率未上升至频率参考值时.......................................................................7-17
简介 要成功实现完全普适计算,每个计算节点都必须能够在没有用户干预的情况下运行。对于需要体积小巧且可移动的计算节点,实现此目标的主要障碍是需要连续的电源。尽管对微电池的研究仍在继续,但这种电源只能容纳有限的能量。目前的薄膜微电池在 4V 左右时只能达到 65 µ Ah/cm 2 的容量(每单位面积的硅)[3]。一个更有吸引力的解决方案是让节点从其环境中获取能量,形成一个自供电系统。这种能量可以是太阳能 [2]、热梯度或某种形式的运动 [1]、[4]。本文对基于运动的主要类型的微型发电机架构进行了比较。这些运动装置将环境机械振动转换为电能,供超低功耗电子设备(例如计算工件)使用。
超声波电源(发电机)将 50/60 Hz 电压转换为高频电能。此交流电压施加到转换器内的圆盘状陶瓷压电晶体上,使它们随着极性的每次变化而膨胀和收缩。这些高频纵向机械振动被探头(喇叭)放大,并以交替的膨胀和压缩声压波的形式传输到液体中。压力波动导致液体分子内聚力分解,将液体拉开并产生数百万个微气泡(空腔),这些气泡在低压阶段膨胀,在高压阶段剧烈内爆。随着气泡破裂,内爆点会产生数百万个微观冲击波、微喷射流、涡流和极端压力和温度,并传播到周围介质。尽管这种称为空化的现象仅持续几微秒,并且每个气泡释放的能量很小,但内爆空腔产生的累积能量极高,是超声波槽中产生能量的许多倍。
MEMS 1010 MSE 中的实验方法 MEMS 1011 结构与性能实验室 MEMS 1012 计算材料科学 MEMS 1016* 非线性动态系统 MEMS 1020* 机械振动 MEMS 1030 材料选择 MEMS 1032 汽车制造 MEMS 1033 断裂力学 MEMS 1035 复合材料 MEMS 1045* 自动控制 MEMS 1046* 人机机器人与控制 MEMS 1047 有限元分析 MEMS 1048 纳米级分析与表征 MEMS 1049* 机电一体化 MEMS 1051 应用热力学 MEMS 1053 晶体结构与衍射 MEMS 1055 传输现象的计算机辅助分析 MEMS 1057 微/纳米制造 MEMS 1058 材料的电磁特性 MEMS 1059 相平衡材料学 MEMS 1060 数值方法 MEMS 1063 相变与微观结构演化 MEMS 1065 热系统设计 MEMS 1070 材料机械行为 MEMS 1071 应用流体力学 MEMS 1074 纳米材料与生物分子组装
亚太振动会议(APVC)是一项两年一次的活动,特别强调了振动工程和科学领域。它一直是大学,公司,工程师和从业人员的研究人员的平台,以传播其最新发现。实际上,它始于1985年,是“ Kikai Rikigaku Kouenkai”(JSME国内机械振动会议)的一部分,从那时起,它随着亚洲振动会议和后来的“太平洋”而扩大,以扩大覆盖区域。九个国家和地区已被选为会议场所。本次会议是许多国际会议的先驱,这些国际会议题为“亚洲”或“太平洋”,这些会议曾在JSME后面开始,显然,过去的研究人员过去是过去的巨大成功,以及与东方和东南亚国家的许多研究人员的合作。在这次特殊讲座中,希望我们所有人都有机会回顾APVC的历史来祝贺“二十周年”,我们分析了亚洲研究人员坚持并将解决的问题。此外,在这里年轻的有前途的研究人员,我们想考虑会议的未来,并帮助我们在这个快速变化的世界中创造新的想法。
如今,已经为广泛的应用开发了不同类型的能量收割机,其中有压电能量收割机在可穿戴电子产品中显示出很大的潜力,因为它们能够从机械振动或变形等环境来源收集能量。由于提高了效率,灵活性和生物相容性,目前的技术正在利用压电聚合物。在这个项目中,一种简单的方法,即滴铸件,用于制备基于聚(氟化氟化物 - 三氟乙烯)(p(vdf-trfe))的能量收割机。碳酸盐溶剂用于有效地制定P(VDF-TRFE)粉末的稳定墨水。退火和电晕螺栓以增强压电性能。在不同的力和电阻下测量了压电设备的机电性能。带有铂的压电设备,因为顶部电极分别产生高达3.8 V和0.025 µW cm -2的电压和功率密度。结果表明,基于P(VDF-TRFE)基于P(VDF-TRFE)的未来有希望的未来,以柔性,自供电和可穿戴的电子应用中的压电能量收集设备。
作为驱动力,诱导物理或化学电子转移过程来促进催化。[1–3] 自从机械催化被首次提出以来,[4] 它已被广泛应用于材料合成、[5] 水处理、[6] 回收或其他自由基相关化学等各个领域。[7] 近年来,利用压电/热电/铁电半导体的表面极化电荷,压电催化是一种新型的机械催化,已见报道,可通过机械刺激直接实现电化学反应。[8] 变形的压电/热电/铁电半导体的极化可以增强自由电荷和束缚电荷的能量,促进载流子的分离,增加参与催化反应的激发电荷的寿命。 [9,10] 压电催化不仅可以利用环境中的机械振动(如风或波浪),还可以利用工业系统中的冗余振动进行催化。因此,压电催化被认为是一种有前途的绿色机械催化。然而,压电、热电或铁电效应仅表现在具有非中心对称结构的压电材料中,例如纤锌矿结构,[11] 这极大地
•刚性多体流体结构相互作用(RMB-FSI),系统的多物理系统(SOS),计算多机2D/3D动态系统,集团参数建模以及2D/3D机械设备设计,并应用于浮动的离岸风力涡轮机(FOWT),无效的轴线(FOWT) (WEC)。•非线性动态,分叉,混乱理论,线性/非线性谨慎/连续系统中的机械振动,应用于振动吸收,非线性能量水槽,旋转系统中的能量收集,MEMS和NEMS共振器共振器的设计,以及旋转机器的健康监测和损坏。•非线性自适应/鲁棒控制系统设计,数字控制,机器人技术,机器人和自动化,并在自主系统下应用,在启动系统,四轮驱动器,腿部机器人,生物启发的机器人和康复机器人之下。•耦合的微分方程的非线性时间周期系统的扰动分析,并应用于自激发和参数激发的系统,陀螺仪系统,非自我学系统以及暴露于非守护力的弹性结构。奖励和荣誉
体感皮层的皮层内微刺激 (ICMS) 可激活刺激电极周围的神经元并引发触觉。然而,目前尚不清楚皮层神经元的直接激活如何影响它们处理来自皮肤的其他触觉输入的能力。在左、右体感皮层均植入慢性微电极阵列的人体中,我们在同时提供 ICMS 的同时向皮肤施加机械振动,并量化机械和电刺激对触觉的影响。我们发现阈下 ICMS 增强了皮肤触摸的敏感度,证据是振动触觉检测阈值降低(中位数:-1.5 dB),但阈下振动不会系统性地影响 ICMS 的可检测性。超阈值振动导致 ICMS 阈值增加(中位数:2.4 dB),但超阈值 ICMS 对振动触觉阈值影响不大。 ICMS 引起的振动触觉敏感性增强与位置有关,刺激电极的投射场和振动刺激的位置距离越远,效果大小越小。这些结果表明,仅对皮质进行有针对性的微刺激就可以局部增强触觉敏感性,有可能恢复或加强受伤后保留的触觉。
由自然界观察到的小亚基的层次自我调节聚集的启发,为组件的自下而上的组装提供了一种策略,可以通过离散构件的自发组合来构建二维或三维吸引人的生物模仿材料。在此,我们报告了超声波能量辅助,快速,二维和三维中尺度的井井有序的微生物构建块(大小为100μm)的方法。在倒入水滴的水上界面上的机械振动能量驱动的自组装,并在动态探索了图案化结构的实时形成过程。40 kHz超声波被转移到悬浮在水环境中的微板岩中,以驱动预先设计的良好结构的自我组装。在水相内的微血小板的二维自组装具有较大的图案区域。稳定的三维多层自组装结构在空气水接口上很快形成。这些演示旨在为具有自主组织策略的新的二维表面涂料技术开放独特而有效的方法,以及由自下而上方法和自然界中常见的三维复杂层次结构(例如Nacre,Bone或bone或Enamel等)建立的三维复杂层次结构。)。