1983 年 8 月 30 日,布鲁福德成为第一位进入太空的非裔美国人。他的第一次任务是 STS-8,这是第一次夜间发射和夜间着陆的航天飞机飞行。在这次任务中,机组人员在 145 小时内绕地球飞行了 98 圈,同时进行了几个重要的研究项目,包括测试机械臂和进行医学测量以研究太空旅行对人体的影响。布鲁福德后来又参加了另外三次太空任务,包括 STS-61A,这是单艘航天器上八名机组人员飞行的最大机组人员记录。他总共在太空中呆了超过 688 个小时。
摘要:过去几十年来,错误相关电位 (ErrPs) 在非侵入式脑机接口 (BCI) 控制研究中的实用性已得到证实。然而,为了持续纠正 BCI 中末端执行器(例如机械臂)的错误动作,这些仅与离散错误感知相关的神经关联仍然存在问题。使用预先记录的数据集,在不同的正确或错误条件下提供 2D 跟踪任务的反馈,我们分析了是否可以从脑电图 (EEG) 中观察到连续反馈过程中的错误处理。在这个包含 30 个记录会话的数据集中,我们能够检测到正确条件和错误条件之间的显著差异。此外,报告了两种错误条件之间的最小显著差异,证实了错误和认知反应之间的直接联系。
空间智能机器人不受人体生理条件的限制,将其用于太空探索与利用是自动化技术发展的一个有吸引力的选择,目前是世界各航天大国的重点发展方向。本文首先研究了面向空间站的机械臂和仿人机器人系统,综述了机器人实现大范围稳定运动和智能灵巧操控的理论与方法。然后,综述了用于在轨卫星维护的智能机器人系统,分析了多机器人协作的相关技术。最后,研究了用于大型空间结构在轨装配的智能机器人系统,总结了模块化装配和在轨制造技术。总体而言,本文回顾了空间机器人的技术进展和发展趋势,为该领域的进一步技术研究提供了很好的参考。
用于数据收集、观察和协作任务执行的卓越平台 Antipodes 拥有两个 1.47 米(58 英寸)半球形丙烯酸圆顶,为深海探险期间的直接科学观察和拍摄提供卓越的视野。她的容量允许来自多个学科的船员实时协作,因此检查不仅限于操作员指定的感兴趣区域,而是由船上人员的共识决定,从而允许不同的视角。得益于其全套导航和声纳设备,Antipodes 还能够在低能见度和多变的天气条件下全天候运行,使其船员能够及时、有效地对海洋环境进行调查。除了标准的导航和采样设备套件(包括机械臂、多波束声纳和高清成像功能)外,Antipodes 还具有完全可配置性,可满足研究和商业界最复杂的数据收集需求。
触觉是指触摸和相关感觉反馈的形式。该领域的研究人员致力于开发、测试和改进触觉和力反馈设备及支持软件,使用户能够感知(“感觉”)和操纵三维虚拟物体的形状、重量、表面纹理和温度等特征。除了对人类触觉的基本心理物理研究以及机器触觉问题(如碰撞检测、力反馈和触觉数据压缩)之外,研究人员还在应用领域开展研究,如手术模拟、医疗培训、科学可视化以及盲人和视障人士的辅助技术。设备如何模拟触觉?我们来考虑一下 SensAble Technologies 的一种设备。3 DOF(自由度)PHANToM 是一个小型机械臂,带有三个旋转关节,每个关节都连接到计算机控制的直流电动机。该设备的尖端连接到用户握住的触控笔上。通过发送适当的电压 -
摘要——气动技术在工业中的应用受到广泛青睐,因为它具有广泛的可用性和无污染的流体,因此有可能取代工业中的其他系统。在工业机器人领域,很少设计带有气动伺服电机的机械臂,因为对此的研究很少。该技术是一种带反馈的闭环重复控制系统,使其在工业过程中的实施成为可能。由于气动工业机器人很少,本研究旨在设计一个原型,通过运动学的解析对位置进行精确控制并降低气动系统的非线性随机性,这将为所需应用的气动伺服电机的机械调整提供必要的信息以及对传输模拟的解释。本研究提供了一个完全气动和功能齐全的机器人原型的制造模型,为未来应用于工业机器人的气动控制研究开辟了领域。
脑机接口 (BCI) 研究已在众多应用领域取得了重大进展,包括让瘫痪患者控制机械臂 [1]、改善睡眠质量 [2] 和减轻重度抑郁症的影响 [3]。然而,由于两个关键因素,当前最先进的 BCI 通常无法很好地推广到日常使用。首先,当前的 BCI 依赖于根据每个人的训练数据进行微调的模型 [4];这使得在为每个人收集到大量训练数据之前很难实现 BCI。其次,大多数现有的 BCI 研究局限于实验室,其中运动受限于研究任务,因此不能准确地表示神经信号的多样性。一些研究已经在自然环境中训练了 BCI [5,6]——让受试者自由移动的环境——但必须完成更多的转化工作才能将实验室的进展转化为现实世界。
1990 年哈勃发射后,五次航天飞机任务飞往轨道天文台,为 EVA 宇航员进行维修和太空系统升级。日本发射了 ETS-VII 来演示机器人维修,它是第一颗配备机械臂的卫星。轨道快车是 DARPA 和 NASA 的联合任务,演示了 RPO、加油和模块更换。国际空间站经过数十年的多次飞行组装和维修,使用了来自美国(航天飞机)、国际合作伙伴(例如联盟号、进步号)和工业界(例如龙飞船、天鹅座)的各种飞行器。国际空间站的一系列 RRM 实验已经展示了使用专门工具存储和机器人传输流体,以及机器人操作合作和传统航天器接口。在国际空间站上,NASA 的 ISM 项目已经展示了加压空间内的各种制造能力。
2022 年,DeepMind 发布了 Gato,这是一个单一的 AI 模型,在其训练的 600 项任务中的 450 项中,其表现优于一半以上的人类专家 [3]。这些任务包括为图像添加字幕、进行对话和控制机械臂。大约在同一时间,谷歌宣布了 PaLM,这是一个 5400 亿参数的模型,在数百种不同的语言任务中取得了最先进的性能 [4]。同年晚些时候,OpenAI 发布了 ChatGPT,人们普遍认为这是数十年来对话式 AI 努力的结晶 [9],也是第一款在不到两个月的时间内达到 1 亿用户的产品 [23]。然后,在 2023 年初,OpenAI 宣布了 GPT-4,除了许多其他创纪录的功能外,它在统一律师资格考试、AP 美国历史和数学 SAT 等各种测试中都获得了 90% 的成绩 [10]。
摘要 — 脑机接口依赖于看似简单但实际执行起来却很复杂的认知任务。在这种情况下,提供引人入胜的反馈和主体的体现是整个系统性能的关键之一。然而,事实证明,单靠非侵入性大脑活动通常不足以精确控制机械臂等复杂外部设备的所有自由度。在这里,我们开发了一种混合 BCI,它还集成了眼动追踪技术,以提高主体的整体代理感。虽然之前已经探索过这种解决方案,但如何结合凝视和大脑活动以获得有效结果的最佳策略研究甚少。为了解决这一差距,我们探索了两种不同的策略,其中执行运动想象的时间会发生变化;一种策略可能比另一种策略更不直观,这会导致性能差异。