机械载荷通常被认为对骨架有积极影响。但是,并非所有类型的机械负载都具有相同的有益效果。许多RE搜索者已经研究了哪种机械负荷对于改善骨骼和强度更有效。在各种机械载荷中,高影响力负载(例如跳跃)似乎比步行,跑步或游泳之类的低影响负荷更为有益。因此,通过跑步,游泳和跳跃练习施加的不同形式的机械加载可能对骨骼适应有不同的影响。然而,关于机械负荷类型及其对小梁骨结构的影响之间的关系知之甚少。本文的PUR姿势是回顾有关跑步机跑步,跳跃和游泳对小动物小梁骨微体系结构的影响的最新报告。在这些不同的练习中,负荷对小梁骨结构的影响似乎有所不同,因为几份报告表明,跳跃通过增强小梁来增加小梁骨质量,而跑步机和游泳则通过增加小径的数量而不是厚度,而不是厚度。这表明不同类型的运动通过小动物的不同建筑模式促进小梁骨质量的增长。
© 编辑(如适用)和作者 2021。本书为开放获取出版物。开放获取 本书根据知识共享署名 4.0 国际许可证 (http://creativecommons.org/licenses/by/4.0/) 的条款进行许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接并指明是否做了更改。本书中的图片或其他第三方资料包含在本书的知识共享许可证中,除非资料的致谢中另有说明。如果资料未包含在本书的知识共享许可证中,且您的预期用途不被法定规定允许或超出允许的用途,则需要直接从版权所有者处获得许可。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等,即使没有特别声明,也并不意味着这些名称不受相关保护法律法规的约束,因此可以自由使用。出版商、作者和编辑可以放心地认为,本书中的建议和信息在出版之日是真实准确的。出版商、作者或编辑均不对本书所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图和机构隶属关系中的司法管辖权主张保持中立。
用于表征飞机机身撞击损伤的光学工具 N.Fournier 1 – F. Santos 1 - C.Brousset 2 – JLArnaud 2 – JAQuiroga 3 1 NDT 专家,2 AIRBUS France,3 Universidad Cmplutense de Madrid 摘要:在飞机制造/组装过程中或交付后的使用中,机身外部可能会出现表面损伤。大多数此类缺陷与飞机尺寸相比都很小,通常分布在机身的整个表面。为了正确表征这类异常,无损检测领域一直需要新手段。它们需要可靠、便携、快速和准确。对于此类缺陷,光学技术通常可以提供好的解决方案。然后,开发了基于光学的新技术来满足飞机制造商对损伤表征的要求。具体来说,我们开发了一种基于阴影莫尔效应的便携式设备,用于表征飞机机身撞击损伤的精确几何形状。该系统易于使用、便携、快速且成本低廉。它将有助于操作员对缺陷进行分类,并在检查过程中节省大量时间。经过一段时间的测试后,该设备应在飞机的总装线上使用。1 – 简介:在航空领域,国家和国际机构都要求制造商、航空公司和维修机构严格遵守有关飞机安全和保障的现行规定。飞机的结构在使用过程中承受着巨大的机械负荷,每个部件都有确定的使用寿命。必须定期检查零件以检查其可用性,并在其整个使用寿命期间安排系统的无损检测。当发生损坏时,必须对面板进行额外的控制,以确保其完整性以便继续使用。结构复杂性的增加以及为提高机械性能和减轻结构重量而使用的新材料导致了新的控制手段的不断发展。这些工具必须与旧工具一样高效,更快、更准确、更自动化,并且对人为解释的限制性更强。这种演变是航空业所有参与者遵循的整体质量战略的一部分。在所有可能影响结构完整性的损坏中,意外表面凹痕是最受监控的损坏之一:必须控制受影响的区域,以确保不会产生裂纹、分层或剥离。在进行任何更深的无损检测控制之前,操作员必须评估表面和深度损坏的严重性。制造商的设计办公室会给出公差,以根据这些标准将损坏分类,从而确定后续操作。然后,控制员必须恢复凹痕的精确几何形状,主要有两个原因:帮助他们对损坏进行分类,并帮助设计办公室确定受影响结构的新机械属性(当凹痕几何形状足够关键以运行此类程序时)。2 - 凹痕表征工具:Moireview©:开发了一种新工具来满足凹痕表征方面的需求。该系统基于光学,可以检索受影响区域的 3D 形状。它的开发是对目前使用的机械手段(深度计、粗糙度仪……)的补充。此工具的基本规格是快速、自主、便携和易于使用。负责检查的操作员必须在飞机周围走动以检测损坏情况,并可能从地面、平台或发动机舱进行测量。此后,他们应该能够携带该工具进入难以接近的区域。考虑到飞机的整个表面,与相对较小的凹痕(可能有很多且遍布整个飞机)相比,系统必须快速,以便在合理的时间内完成完整的检查。最后,考虑到设计办公室给出的公差,该工具必须足够精确。