自1870年代内燃烧引擎(ICE)出现以来,汽车行业经历了重大的进步和转变。这种追求是为了实现对跨国货物和人民的更高效和成本效益的运输。在过去的一个世纪中,该行业目睹了动力总成组件(例如发动机和传输)的创新,以满足消费者和监管要求,以提高燃油经济性和马力。结果,这些组件中使用的材料必须轻巧,耐用,并且能够承受高热和机械载荷,同时可以制造复杂的3D几何形状。随着汽车行业向电气化转向减轻碳排放,对创新材料的需求将更大。随着汽车制造商在电力推进和电池应用中开发新颖的解决方案,这种需求将继续增长。
从所有类型的车辆中排放温室气体。可以在各大洲找到实现气候中立的雄心勃勃的目标。例如,在2021年7月,欧盟委员会发布了其“适合55”立法,其中包含有关汽车行业未来的重要准则:欧盟出售的所有新车必须从2035年起为零。[1]为了实现电动汽车,锂离子(锂离子)电池中存储的电能是一种关键技术,并得到了其他替代方案(例如燃料电池)的补充。在汽车领域,锂离子电池目前是储能的首选解决方案。电动汽车有大型电池组,可以满足客户对长期驾驶范围的要求,因此变得过于沉重和昂贵。大约有25%的特斯拉型号S(85 kWh版本)来自电池组。[2]因此,当前的电池电动汽车解决方案不是很高的能量。本研究介绍了一种旨在提高电动道路车辆,船和船只以及飞机的能量效率的多额外材料,并在车辆的内部和外部结构中提供了内在的能量存储能力。通过将多个功能组合为一种材料,可以创建更轻,更具资源的产品,从而提高能源效率和可用性。[3]以这种方式,客户的驱动范围焦虑可以缓解,运输中的能源消耗大大减少。当前最新的结构电池复合材料由碳纤维制成。[2,4]可以在存储电能的同时可以承载机械载荷的复合材料已成为结构电池。[5 - 8]可能,结构电池可以在未来的电动汽车中提供少量的储能。[5,9]该复合材料具有层压架构,与传统的复合材料和传统的锂离子电池非常相似。这个想法是针对每种材料的组成部分,至少在复合材料中发挥了双重作用。例如,在负电极(阳极)中,碳纤维是活性电极材料,即锂的宿主,将电子作为电流收集器传导,并带有机械载荷作为增强。[10]一个基于碳纤维的正极电极(阴极)处于开发状态,其中碳纤维涂有磷酸锂(LFP)颗粒。[11,12]在此设计中,碳纤维
摘要:高级孔隙形态 (APM) 泡沫元件几乎是球形的泡沫元件,具有坚固的外壳和多孔的内部结构,主要用于压缩载荷应用。为了确定内部结构的变形及其在压缩过程中的变化与其机械响应之间的关系,进行了原位时间分辨 X 射线计算机微断层扫描实验,其中在加载过程中对 APM 泡沫元件进行 3D 扫描。当机械响应与样品的内部变形相关时,同时施加机械载荷和射线成像使人们对 APM 泡沫样品的变形行为有了新的认识。研究发现,在出现第一个剪切带之前,APM 元件的刚度达到最高。在此之后,APM 元件的刚度降低,直到内部孔壁之间第一次自接触为止,从而使样品刚度朝向致密化区域增加。
摘要 卫星用于导航、通信、海洋学、天文学等。卫星的尺寸和形状多种多样。根据卫星的任务,使用不同的子系统。这些子系统安装在外壳内,以保护它们免受太空环境的影响。这个外壳也称为卫星主结构或机械结构,由耐用材料制成,可以承受发射和在轨期间的恶劣条件。卫星质量的优化现在至关重要,因为卫星每天都在损失质量以降低制造和发射成本。本综述首先介绍卫星分类和子系统的概况。然后,演示卫星自身所受的不同类型的机械载荷分析。探索了提升卫星机械结构性能的先进方法,重点关注等网格和蜂窝夹层结构的优化参数对卫星主结构机械性能的影响。简要介绍了小卫星的组装、集成和测试(AIt)。最后,总结了提高卫星主结构力学性能的重要潜在设计和进一步研究的挑战。
摘要在操作中,印刷电路板(PCB)将面临各种和重复的热机械载荷,这可能导致铜的故障,从而导致PCB本身故障。为了模拟和更好地预测PCB的可靠性,必须定义铜的本构行为。在目前的工作中,在循环拉伸压缩载荷下经常测试了在灵活的PCB行业中经常使用的17 µm滚动退火灯泡。铜的弹性极限较低,塑性变形起着在应变过程中起重要作用。在循环载荷下,已经观察到主要的运动硬化。已通过Lemaitre-Chaboche硬化模型确定了所研究铜胶的塑性行为。接下来,已经开发出一种原始的实验设置,从而可以测量循环载荷下薄铜纤维的疲劳行为。进行了各种负载振幅的测试。已经采用了一个共同的曼森模型来重现实验数据。
方法和结果:在这篇综述中,从机械耦合,分泌的串扰到干细胞交换的肌肉骨相互作用的不断发展的概念被依次解释。机械耦合的理论源于观察到的骨骼质量的发展和维持在很大程度上取决于肌肉衍生的机械载荷,后来沃尔夫的法律,犹他州范式,犹他州范式和机械托特假设证明了这一点。然后,骨骼和肌肉逐渐被识别为内分泌器官,可以分泌各种细胞因子来调节组织稳态并相互重塑。最新的观点以更直接的方式呈现了肌肉骨的相互作用:骨骼肌中常驻间充质基质细胞,即纤维化核对祖细胞(FAPS),可以迁移到骨损伤部位并促进骨骼再生。出现的证据甚至揭示了肌肉骨骼系统外的组织的异位源,突出了其动态特性。
电子设备会整合多种材料,不可避免地包含尖锐的特征,例如接口和角落。当设备受到热载荷和机械载荷的约束时,角落会产生巨大的应力,并且是易于启动故障的脆弱部位。本文分析了拐角处的压力场。拐角处的应力是两种奇异领域模式的线性叠加,其中一种模式比另一种模式更为单数。这两种模式的幅度由两个不同维度的应力强度因子表示。为了确定应力强度因子,我们分析了在两个载荷条件下的平流芯片结构:底物的拉伸和底物的弯曲。我们表明,在产生奇异应力领域时,平流芯片软件包的热载荷等效于底物的拉伸。我们进一步表明,较不奇异的模式可能在更单数的模式下占上风,以进行某些拉伸弯曲组合。两种压力场模式的相对显着性也随材料而变化,底物厚度比。2012 Elsevier Ltd.保留所有权利。
摘要 - 在本文中,提出了针对临时频率SUP端口的风力涡轮机发电机(WTG)和超级电容器能量系统(ESS)的协调控制方案。惯性控制是通过使用发电机扭矩lim的 - 考虑了WTG系统的安全性,而ESS则释放其能量以补偿涡轮转子恢复过程中突然的活动功率不足。wtg是使用疲劳,空气动力学,结构,湍流(快速)代码进行建模的,该代码识别了风能系统中的涡轮机和AD装饰的机械相互作用的机械载荷。在频率支撑期间,将阻尼控制器扩展到惯性控制中,以抑制涡轮机的严重机械振荡。此外,小信号稳定性分析的结果表明,WTGESS倾向于提高整个多能电网的稳定性。本文的主要贡献将通过利用提出的控制方法来介绍,该方法结合了网格支持能力并维持涡轮机的结构设计的完整性,以进行正常操作。
n最近的tokamaks [1],例如目前在法国组装的ITER,磁体Ca-Bles由数百种含有NB 3 SN的复合材料超导电线组成,这是一种强应变敏感的材料[2]。在机器操作期间,这些电缆被提交给电磁和热性质的环状机械载荷。已经观察到这些重复负载会触发电缆的电性能的逐渐但稳定的降低[3],[4]。到目前为止,这种宏观损失的电性能与Su-percoducductuction导线的局部应变状态有关的确切机制仍然部分未知。由于其多尺度和多物理性质,此问题非常复杂。本文基于以前的工作[5] - [7],其最终目标是通过开发实心数值机电模型来阐明电缆和链尺度的一些目标,以模拟运行中的超导电缆。该模型旨在识别和理解性能降解的原因,并获得评估新超导电缆的电缆行为的预测工具。这项工作呈现
产品描述 TR-19 和 TR-19HS 砌块是不含石棉的绝缘产品,由蛭石颗粒和高温粘合材料制成。TR-20 砌块由硅藻土和水硬性粘合剂制成。TR-19 砌块是一种经济、节能的绝缘材料。它在 1900°F (1040°C) 的温度极限下收缩率极小,即使直接暴露在火焰或冰晶石蒸汽条件下也不会轻易分解。TR-19HS 砌块是一种高强度结构绝缘材料,特别适用于存在机械载荷的情况。这种砌块产品在 1900°F (1040°C) 的工作温度极限下收缩率极低,并且可耐受冰晶石蒸汽条件。TR-20 砌块是一种卓越的高温绝缘材料,可在 2000°F (1095°C) 的温度下使用。TR-20 独特的低导电性和高稳定性组合可确保长期免维护服务和最大运行效率。 TR-20 的硫和铁含量也非常低,这使得它具有很强的抵抗大气条件侵蚀的能力,大大降低了产品污染的可能性。