1纳米 - 电子中心(NET),电气工程学院,工程学院,Universiti teknologi Mara,40450 Shah Alam,马来西亚2号雪兰莪2号电气工程学院,工程学院,Teknologi teknologi Mara,Terengganu Mara,Terengun Branch,Dungun Campus,23000 Dungun funcation and nenne nanne nanne nensia,纳米技术,科学研究所(IOS),Universiti teknologi Mara,40450 Shah Alam,雪兰莪,马来西亚4电气和电子工程技术学院,马来西亚大学马来西亚大学,Hang tuah jaya,MALASKA,MELARESIA,MARARESIA INDERCENIOL,MALAKE MARANOMIAL INCERATION,MALARESIA INDERCTION,MARASIINOLIOG马来西亚槟城的Atang Pauh 6马来西亚Sabah大学工程学院,88400 Kota Kinabalu,马来西亚Sabah,马来西亚Sabah 7应用科学学院,Universiti Teknologi Mara,40450 Shah Alam,Shah Alam,Selangor,Selangor,Malaysia 8 Physemia and Malaysia school and Malaysia school and Malaysia school and Malaysia cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres abdur,印度钦奈 Vandalur 科学技术研究所 600 048 9 马来西亚苏丹依德里斯教育大学科学与数学学院纳米技术研究中心 35900 丹戎马林 10 马来西亚敦胡先翁大学电气与电子工程学院微电子与纳米技术 - Shamsuddin 研究中心
摘要:人们不必远远地看到人工智能(AI)(机器执行通常需要人类智能的任务的能力)如何改变所有相关安全部队运作的国际安全环境。由于其跨裁切性质,AI将构成广泛的国际安全挑战,影响传统的军事能力和混合威胁领域,并同样会提供新的机会来应对它们。AI将对每个集体防御,危机管理和合作安全系统的所有核心任务产生影响。随着新的机遇,风险和威胁繁荣和安全的威胁,与这种基础技术相关的承诺和危险太大了,任何单一演员都无法独自管理。因此,固有地需要合作来减轻国际安全风险,并利用该技术改变企业职能,任务支持和运营的潜力。本文的目的是提出独自学习的无人机,即具有人工智能,可以用于军事目的。本文提出了在战斗和非战斗行动中自动使用无人机与人工智能的可能性。由GIS,C5IRS支持的无人机(命令,控制,计算机,通信,网络防御(C5),智能,监视和侦察(ISR)(ISR)(ISR)和AI将在地面上具有显着优势,因为它们可以独自运作并与地面情况一致。随着人类,信息和身体元素的融合,越来越多地确定战场中的决定性优势,互操作性变得更加重要。
在任何情况下,Zebra Technologies 或参与创建、生产或交付随附产品(包括硬件和软件)的任何其他人均不对因使用、使用结果或无法使用此类产品而导致的任何损害(包括但不限于间接损害,包括业务利润损失、业务中断或业务信息丢失)负责,即使 Zebra Technologies 已被告知此类损害的可能性。某些司法管辖区不允许排除或限制偶然或间接损害,因此上述限制或排除可能不适用于您。
1. 概述 ................................................................................................................ 12 2. 麦克风 .............................................................................................................. 12 3. 音量 .............................................................................................................. 13 4. 快照 .............................................................................................................. 13 5. 全屏 .............................................................................................................. 14 6. 放大和缩小 ...................................................................................................... 14 7. 对焦 ............................................................................................................. 15 8. 刷新对焦 ...................................................................................................... 15 4 图像和图像参数 ............................................................................................. 15
7.6 蓝牙 ................................................................................................................................... 20
通过使用玻璃作为润滑剂,可将各种金属制成管材和异型棒材。它于1942年发明,最初应用于碳钢8)随后推广到有色金属,例如铝,9)铜和铜合金10)等。与铝,铜和铜合金相比,钛合金具有更高的抗变形能力,并且在加工和处理过程中会产生高热量。通常将坯料加热到β单相温度区域,然后挤压。但是,钛具有化学活性,并且正如所观察到的在加工中存在的问题一样,它在与对手金属接触时会粘附在其上,并对对手金属造成强烈的磨损。11)因此,与其他金属挤压的情况相比,由于粘结和/或共晶反应,模具和/或推压夹具的磨损较大,因此坯料加热温度、润滑剂、模具形状和模具材料的选择很重要。3.2 热矫直
• Sinchuk, Y.、Pannier, Y.、Antoranz-Gonzalez, R.、Gigliotti, M. (2019) 基于 μ-CT 的有限元模型分析含空隙的碳/环氧 3D 纺织复合材料中水分扩散引起的应力,复合结构,212:561-570。- https://doi.org/10.1016/j.compstruct.2018.12.041 • Gigliotti, M.、Pannier, Y.、Sinchuk, Y.、Antoranz-Gonzalez, R.、Lafarie-Frenot, M.C.、Lomov, S.V.(2018) X 射线微型计算机断层扫描表征无卷曲 3D 正交编织复合材料中热循环引起的裂纹,复合材料 A 部分:应用科学与制造,112:100-110。- https://doi.org/10.1016/j.compositesa.2018.05.020 • Foti, F.、Gigliotti, M.、Pannier, Y.、Mellier, D.、Lafarie-Frenot, M.C.(2018) 环境对交叉层 C/环氧层压复合材料高温疲劳的影响,复合结构,202:924-934。- https://doi.org/10.1016/j.compstruct.2018.04.065 • Sinchuk, Y., Pannier, Y., Gueguen, M., Gigliotti, M. (2017) 使用全局-局部方法对 2D 纺织复合材料中的水分膨胀进行基于图像的建模,Proc IMechE Part C:机械工程科学杂志 - 特别版:“交通工程中的轻量化设计” 客座编辑:Serge Abrate,美国南伊利诺伊大学,Vincenzo Crupi,意大利墨西拿大学,Gabriella Epasto,意大利墨西拿大学,232:1505–1519。- ISSN:0954-4062,doi:10.1177/0954406217736789 • Sinchuk, Y., Pannier, Y., Gueguen, M., Tandiang, D., Gigliotti, M. (2017) 基于计算机断层扫描的纺织复合材料水分扩散和膨胀建模与仿真,国际固体与结构杂志,154:88-96。- ISSN:0020-7683,doi:10.1016/j.ijsolstr.2017.05.045 • Gigliotti M、Pannier Y、Lafarie - Frenot MC、Grandidier JC。(2016) “飞机应用中有机基复合材料“多物理”疲劳的一些例子”。载于:《航空航天工程中的复合材料和结构》,Carrera E,编辑。Trans Tech Publications,瑞士普法菲孔;第五章,第 79-96 页。• Guigon C、Lafarie - Frenot MC、Pannier Y、Rakotoarisoa C. (2015) “环境对 3D 编织聚合物基复合材料中热循环引起的微裂纹的影响”。ICFC6,第六届复合材料疲劳国际会议。法国巴黎,第 10 页。 • Gigliotti M、Pannier Y、Foti F、Lafarie - Frenot MC、Mellier D、Luu TC。(2015) “飞机用层压和纺织有机复合材料的多物理疲劳”。ICFC6,第六届复合材料疲劳国际会议。法国巴黎,10 页。 • Foti F、Pannier Y、Gigliotti M、Lafarie - Frenot MC、Mellier D、Luu TC。(2015)“用于航空应用的层压和编织有机基质复合材料的多物理疲劳。JNC 19,第十九届全国复合材料日。里昂(法国)。• Guigon C、Lafarie - Frenot MC、Pannier Y、Olivier L、Rakotoarisoa C.(2014 年)“温度和热循环老化对 RTM 制造的聚合物基质 3D 编织复合材料性能的影响”。ECCM16,第 16 届欧洲复合材料会议。西班牙塞维利亚。8 页。• Guigon C、Pannier Y、Beringhier M、Lafarie - Frenot MC 和 Rakotoarisoa C.(2013 年)“温度和热循环对 RTM 工艺制造的 3D 编织 CMO 阻力的影响”。JNC18,第十八届全国复合材料日。法国南特。• Gigliotti,M.、Grandidier,J.C.、Lafarie-Frenot,M.C.(2014)“有机基质复合材料的老化。“案例研究”,载于《工程技术》,AM 5 322,T.I. 版,巴黎,34 页 • Gigliotti,M.,Grandidier,J.C.,Lafarie-Frenot,M.C.(2013)“有机基质复合材料的老化。建模工具”,《工程技术》,AM 5 322,T.I. 版,巴黎,17p • Lafarie-Frenot MC,Ho NQ。(2006)“热循环条件下自由边层内应力对 CFRP 板层损伤过程的影响”。复合材料科学与技术; 66: 1354-65。• Lafarie-Frenot MC、Rouquie S、Ho NQ 和 Bellenger V. (2006)“等温老化和热循环过程中 C/环氧层压板损伤发展情况比较”。复合材料 A 部分:应用科学和制造; 37: 662-71。• Rouquie S、Lafarie-Frenot MC、Cinquin J、Colombaro AM。(2005)“中性和氧化环境中碳/环氧层压板的热循环”。复合材料科学与技术; 65: 403-9。
• Sinchuk, Y.、Pannier, Y.、Antoranz-Gonzalez, R.、Gigliotti, M. (2019) 基于 μ-CT 的有限元模型分析含空隙的碳/环氧 3D 纺织复合材料中水分扩散引起的应力,复合结构,212:561-570。- https://doi.org/10.1016/j.compstruct.2018.12.041 • Gigliotti, M.、Pannier, Y.、Sinchuk, Y.、Antoranz-Gonzalez, R.、Lafarie-Frenot, M.C.、Lomov, S.V.(2018) X 射线微型计算机断层扫描表征无卷曲 3D 正交编织复合材料中热循环引起的裂纹,复合材料 A 部分:应用科学与制造,112:100-110。- https://doi.org/10.1016/j.compositesa.2018.05.020 • Foti, F.、Gigliotti, M.、Pannier, Y.、Mellier, D.、Lafarie-Frenot, M.C.(2018) 环境对交叉层 C/环氧层压复合材料高温疲劳的影响,复合结构,202:924-934。- https://doi.org/10.1016/j.compstruct.2018.04.065 • Sinchuk, Y., Pannier, Y., Gueguen, M., Gigliotti, M. (2017) 使用全局-局部方法对 2D 纺织复合材料中的水分膨胀进行基于图像的建模,Proc IMechE Part C:机械工程科学杂志 - 特别版:“交通工程中的轻量化设计” 客座编辑:Serge Abrate,美国南伊利诺伊大学,Vincenzo Crupi,意大利墨西拿大学,Gabriella Epasto,意大利墨西拿大学,232:1505–1519。- ISSN:0954-4062,doi:10.1177/0954406217736789 • Sinchuk, Y., Pannier, Y., Gueguen, M., Tandiang, D., Gigliotti, M. (2017) 基于计算机断层扫描的纺织复合材料水分扩散和膨胀建模与仿真,国际固体与结构杂志,154:88-96。- ISSN:0020-7683,doi:10.1016/j.ijsolstr.2017.05.045 • Gigliotti M、Pannier Y、Lafarie - Frenot MC、Grandidier JC。(2016) “飞机应用中有机基复合材料“多物理”疲劳的一些例子”。载于:《航空航天工程中的复合材料和结构》,Carrera E,编辑。Trans Tech Publications,瑞士普法菲孔;第五章,第 79-96 页。• Guigon C、Lafarie - Frenot MC、Pannier Y、Rakotoarisoa C. (2015) “环境对 3D 编织聚合物基复合材料中热循环引起的微裂纹的影响”。ICFC6,第六届复合材料疲劳国际会议。法国巴黎,第 10 页。 • Gigliotti M、Pannier Y、Foti F、Lafarie - Frenot MC、Mellier D、Luu TC。(2015) “飞机用层压和纺织有机复合材料的多物理疲劳”。ICFC6,第六届复合材料疲劳国际会议。法国巴黎,10 页。 • Foti F、Pannier Y、Gigliotti M、Lafarie - Frenot MC、Mellier D、Luu TC。(2015)“航空应用层压和编织有机基复合材料的多物理疲劳。JNC 19,第 19 届全国复合材料日。里昂(法国)。• Guigon C、Lafarie - Frenot MC、Pannier Y、Olivier L、Rakotoarisoa C. (2014)“温度和热循环老化对 RTM 制造的聚合物基体 3D 编织复合材料性能的影响”。ECCM16,第十六届欧洲复合材料会议。西班牙塞维利亚。8 页。• Guigon C、Pannier Y、Beringhier M、Lafarie - Frenot MC、Rakotoarisoa C. (2013)“温度和热循环对 RTM 工艺制造的 3D 编织 CMO 性能的影响”。JNC18,第 18 届全国复合材料日。法国南特。• Gigliotti, M.、Grandidier, J.C.、Lafarie-Frenot, M.C.(2014)“有机基复合材料的老化。案例研究”,《工程技术》,AM 5 322,T.I. 版,巴黎,34p • Gigliotti, M.、Grandidier, J.C.、Lafarie-Frenot, M.C.(2013)“有机基复合材料的老化。建模工具”,《工程技术》,AM 5 322,T.I. 版,巴黎,17p • Lafarie-Frenot MC,Ho NQ。(2006)“热循环条件下自由边缘层内应力对 CFRP 层压板损伤过程的影响”。复合材料科学与技术; 66:1354-65。• Lafarie-Frenot MC、Rouquie S、Ho NQ、Bellenger V. (2006)“等温老化或热循环过程中 C/环氧树脂层压板损坏发展的比较”。复合材料 A 部分:应用科学与制造; 37:662-71。• Rouquie S、Lafarie-Frenot MC、Cinquin J、Colombaro AM。(2005)“中性和氧化环境中碳/环氧树脂层压板的热循环”。复合材料科学与技术; 65:403-9。
尽管一致努力减少严重伤害和死亡(SIF),但工作场所的死亡人数却没有急剧减少在1992年至2017年之间,OSHA(职业安全与健康管理局)可记录的伤害率从每100名工人的8.9损伤下降到每100名工人的2.8次伤害,下降了67%(国家安全委员会,2018年)。在同一时间范围内,工作场所死亡率(可预防的死亡)仅下降了26%,2017年有4,414例可预防的工作场所死亡人数(劳工统计局,2018年)。此外,根据美国劳工统计局的数据,2018年美国记录了5,250例致命工作伤害,比2017年的5,147人增加了2%。在2017年至2018年之间,致命的劳动伤害率保持不变,为每10万名全职工人3.5。公司为减少工作场所伤害的巨大努力似乎并没有转化为有影响力的工作场所死亡人数。