摘要:本文介绍了一种用于治疗杜氏肌营养不良症 (DMD) 儿童的步态辅助外骨骼的机电一体化设计。这种类型的肌营养不良症是一种严重的疾病,会导致肌肉萎缩,从而导致活动能力逐渐丧失。临床研究表明,物理治疗有助于延长杜氏肌营养不良症患者的活动能力。然而,治疗过程是由高素质康复人员执行的繁琐活动,这使得为每位患者提供适当的治疗变得困难。本文开发了一种步态辅助外骨骼的机电一体化设计,以实现治疗过程的自动化。外骨骼设计使用适应性机制来根据患者的需求调整设备,并包括串联弹性致动器的设计,以减少外骨骼和患者之间旋转轴不对齐的影响。利用六岁儿童的人体测量数据,开发了外骨骼和儿童身体的数学动态混合模型。混合模型用于设计非线性控制策略,该策略使用微分几何进行反馈线性化并确保稳定的参考跟踪。所提出的控制律在模拟中进行了数字验证,以评估在使用轨迹跟踪程序进行治疗期间,控制系统在参数变化下的性能和鲁棒性。
目前市场对机电一体化的技术要求越来越高,为推动机电一体化发展迈上新阶段,必须利用好信息技术,将智能控制运用到工业生产过程中,通过设备来控制生产进度和质量,降低人力物力成本,为机电一体化提供更大的经济效益。随着工业产品附加值的不断提高,对产品的精度要求越来越高,加速了工业生产过程的复杂程度,对机电一体化系统的功能提出了更高的要求。基于此,本次我们将重点探讨智能控制的特点及其在机电一体化中的应用。关键词
研究出版物(2020-22) 1. Karthik Rao MC、Rashmi L Malghan、Arun Kumar Shettigar、Shrikantha S Rao 和 Mervin A Herbert(2022)反向传播算法在基于神经网络的 AISI 316 面铣削低温加工技术识别响应中的应用,澳大利亚机械工程杂志,20:3,698-705,DOI:10.1080/14484846.2020.1740022 2. B. Mukherjee、KBM Swamy 和 S. Sen,“对静电梳状驱动 MEMS 执行器中减少不良梁弯曲的新分析”,IEEE 仪器和测量学报,第 69 卷,第 1 期。 2,第 488-500 页,2020 年 2 月 3. M Manvi、KBM Swamy,“基于微电子材料、微加工工艺、微机械结构配置的 MEMS 刚度评估:综述”,微电子工程,第 263 卷,2022 年,111854 4. Yashas M;Do Rosario Carvalho AD;Navin Karanth P,“Desai V. 气动肌肉执行器性能分析测试台的设计和制造”,机械工程讲义,DOI:10.1007/978-981-15-4739-3_3,第 23 卷,第 33-45 页,2021 年。 5. Mohith S;Upadhya AR;Navin KP;Kulkarni SM;和 Rao M,“精密运动压电执行器及其应用的最新趋势:综述”,智能材料与结构,DOI:10.1088/1361-665X/abc6b9,第 30 卷,第 13002 号,2021 年。6. S. Kumawat、S. Bhaktha 和 KV Gangadharan,“通过双齿开关磁阻电机提高扭矩性能:一种新方法”,2021 年。doi:10.1109/IPRECON52453.2021.9640842。7. UR Poojary 和 KV Gangadharan,“磁流变弹性体的频率、磁场和应变相关响应的材料建模”,材料科学杂志,第 56 卷,第 13002 号。 28,第 15752 15766 页,2021 年,doi:10.1007/s10853-021-06307-0。8. S. Mohith、N. Karanth P、SM Kulkarni、V. Desai 和 SS Patil,“用于生物医学应用的具有中心激励和环形激励的压电驱动无阀微泵性能比较”,智能材料与结构,第 30 卷,第 10 期,2021 年,doi:10.1088/1361-665X/ac1dbe。 9. KN Ravikumar、CK Madhusudana、H. Kumar 和 KV Gangadharan,“使用离散小波变换特征和 K 星算法对内燃机 (IC) 变速箱中的齿轮故障进行分类”,《工程科学与技术》,国际期刊,第 30 卷,2022 年,doi:10.1016/j.jestch.2021.08.005。10. M. S、NK P 和 SM Kulkarni,“环形激励凸起隔膜的分析以提高机械微泵的性能”,《传感器和执行器 A:物理》,第 335 卷,2022 年,doi:10.1016/j.sna.2022.113381。 11. Subramanya R Prabhu、Arun Shettigar、Mervin A Herbert 和 Shrikantha S Rao (2022) 机器变量对 AA6061/TiO2 摩擦搅拌焊缝微观结构和力学性能的影响,材料与加工技术进展,DOI:10.1080/2374068X.2022.2094072。12. H. Nejkar 和 KBM Swamy,“天然增强复合材料弹性特性的理论估计——比较分析”,IOP Conf. Ser. Mater. Sci. Eng.,第 1248 卷,第 012083 页,2022 年,doi:10.1088/1757-899X/1248/1/012083。13. Allien V;Kumar H;和 Desai V,“使用多属性决策进行自由振动分析和高强度和刚度复合材料的选择”,国际材料研究杂志,DOI:10.3139/146.111879,第 112 卷,第 189-197 页,2021 年。14. Rao M;Malghan RL;Shettigar AK;以及 Herbert MA,“Rao SS,低温加工技术相对于 SS316 无冷却液和有冷却液加工的优势”,《工程研究快报》,DOI:10.1088/2631-8695/abecd6,第 3 卷,第 15040 号,2021 年。
学术行为和支持系统声明 学术行为 剽窃——将他人的观点当作自己的观点,无论是逐字逐句还是用自己的话重述——都是严重的学术违规行为,后果严重。请熟悉 SCampus 第 11 节“违反大学标准的行为”中关于剽窃的讨论 https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions/。其他形式的学术不诚实行为同样不可接受。有关 SCampus 和大学关于科学不端行为的政策的更多信息,请参阅 http://policy.usc.edu/scientific-misconduct/。大学不容忍歧视、性侵犯和骚扰。我们鼓励您向公平与多元化办公室 http://equity.usc.edu/ 或公共安全部 http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us 报告任何事件。这对于整个 USC 社区的安全非常重要。大学社区的其他成员(例如朋友、同学、顾问或教职员工)可以帮助发起报告,也可以代表其他人发起报告。妇女和男子中心 http://www.usc.edu/student-affairs/cwm/ 提供 24/7 保密支持,性侵犯资源中心网页 sarc@usc.edu 介绍了报告选项和其他资源。支持系统 USC 的许多学院为需要学术写作帮助的学生提供支持。请咨询您的顾问或项目工作人员以了解更多信息。母语不是英语的学生应咨询美国语言学院 http://dornsife.usc.edu/ali,该学院专门为国际研究生提供课程和讲习班。残疾人服务和项目办公室 http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html 为残疾学生提供认证并帮助安排相关住宿。如果官方宣布的紧急情况导致无法前往校园,南加州大学紧急信息 http://emergency.usc.edu/ 将提供安全和其他更新,包括如何通过黑板、电话会议和其他技术继续教学。
摘要 光子分插滤波器是光纤通信系统中实现波分复用 (WDM) 的关键组件。光子集成领域的最新进展表明,将光子分插滤波器与高性能光子构建块集成在芯片上,可以构建用于 WDM 的紧凑而复杂的光子集成电路。通常,实现基于带有集成加热器或基于自由载流子色散的调制器的微环谐振器来调整滤波器波长。然而,加热器的功耗很高,而自由载流子会导致光吸收损耗,限制了向超大规模电路的可扩展性。我们展示了基于垂直可移动 MEMS 驱动环形谐振器的紧凑型分插滤波器的设计、仿真、制造和实验特性。MEMS 驱动的分插滤波器在 IMEC 的 iSiPP50G 硅光子平台中实现,并使用短后处理流程在晶圆级兼容工艺中安全释放悬浮的 MEMS 结构。该滤波器在 1557.1 nm 处表现出约 1 nm (124.37 GHz) 的直通端口线宽,并且在 27 V 的驱动电压下保持 20 dB 的端口消光和 > 50 dB 的端口隔离。低功耗和紧凑尺寸的结合证明了其适用于光子电路中的超大规模集成。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JOM.2.4.044001]
抽象的光子加载量滤波器是在光纤通信系统中实现波长多路复用(WDM)的关键组件。光子整合的最新进展表明,在芯片上将光子附加电源过滤器与高性能光子构建块一起集成的潜力,以构建WDM的紧凑型和复杂的光子积分电路。通常,实现基于具有集成加热器或基于自由载体分散调节器的微环谐振器,以调整滤波器波长。然而,加热器遭受高功耗,自由载体会导致光吸收损失,从而限制了向非常大尺度电路的可扩展性。我们演示了基于垂直移动的MEMS式环共振器的紧凑型加载滤器的设计,仿真,制造和实验表征。在IMEC的ISIPP50G硅光子平台中实现了MEMS驱动的加载滤波器,并使用短的后处理流程实现,以在晶圆级兼容的过程中安全释放悬挂的MEMS结构。滤波器在1557.1 nm处表现出约1 nm(124.37 GHz)的端口宽度,并保留了20 dB的端口灭绝,端口隔离率在驱动电压的27 V下> 50 dB。低功率消耗和紧凑的足迹的组合证明了在光子cirit中非常大规模整合的适用性。©作者。由SPIE在创意共享归因4.0国际许可下出版。[doi:10.1117/1.jom.2.4.044001]全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。
计算机科学硕士学位 纳姆迪·阿齐基韦大学,阿乌卡,阿乌卡 摘要:人工智能和机器人驱动的垃圾收集系统是智慧城市的必要条件。由于缺乏技术进步和人口不断增长,传统的垃圾收集系统基本上是无效的,而拟议的系统在垃圾收集和处理方面提供了更高的效率和及时性,减少了垃圾箱溢出的漏洞。垃圾箱基于机电一体化的概念,它配备了传感器和机器人控制系统,能够检测垃圾箱的状态,并在垃圾箱装满时自动将其移动到处理中心。机电一体化垃圾箱由移动轮组成,使垃圾箱能够在崎岖不平的道路和地形上移动,每个轮子都有一个直流电机、数字伺服器、遥控发射器、一个传感器摄像头、一个 PCB 和一个 Arduino 超级板。传感器监控垃圾箱并向控制器发出警报信号。如果垃圾箱已装满,它会自动盖上,并在直流电机的帮助下移动到附近的垃圾场。
1。使用FPGA公开设计方法。2。可以深入了解故障模型。3。了解用于故障检测的测试模式生成技术。4。在连续电路中设计故障诊断。5。使用案例研究在流量的设计中提供理解。单元I可编程逻辑设备:可编程逻辑设备,SPLD,PAL设备,PLA设备,GAL设备,CPLD-Archittuction,FPGAS-FPGA技术,体系结构,Virtex CLB和Slice,FPGA编程技术,XC2000,XC2000,XC3000,Act 3 Actient Act1 anderct1 anderct1 anderct1 anderct1 anderct1 anderct1[TEXTBOOK-1] UNIT-II Analysis and derivation of clocked sequential circuits with state graphs and tables: A sequential parity checker, Analysis by signal tracing and timing charts-state tables and graphs-general models for sequential circuits, Design of a sequence detector, More Complex design problems, Guidelines for construction of state graphs, serial data conversion, Alphanumeric state graph notation.需要和设计多锁顺序电路的策略。[TEXTBOOK-2] UNIT-III Sequential circuit Design: Design procedure for sequential circuits-design example, Code converter, Design of Iterative circuits, Design of a comparator, Controller (FSM) – Metastability, Synchronozation, FSM Issues, Pipelining resources sharing, Sequential circuit design using FPGAs, Simulation and testing of Sequential circuits, Overview of computer Aided Design.[Ref.3][教科书2]单元IV故障建模和测试模式生成:逻辑故障模型,故障检测和冗余,故障等效性和故障位置,故障优势,单个卡在故障模型,多个卡在故障模型上,桥接故障模型。通过常规方法,路径敏化技术,布尔差异方法,Kohavi算法,测试算法-D算法,随机测试,过渡计数测试,签名分析和测试桥梁的断层对组合回路的故障诊断。[教科书-3&Ref.1]单元 - 顺序电路中的v故障诊断:电路测试方法,过渡检查方法,状态识别和故障检测实验,机器识别,故障检测实验的设计。
课程内容: 单元 1:拉普拉斯变换 [09 小时] 定义 – 存在条件;基本函数的变换;拉普拉斯变换的性质 – 线性性质、一阶移位性质、二阶移位性质、函数乘以 tn 的变换、尺度变化性质、函数除以 t 的变换、函数积分的变换、导数的变换;利用拉普拉斯变换求积分;一些特殊函数的变换 – 周期函数、海维赛德单位阶跃函数、狄拉克函数。 单元 2:逆拉普拉斯变换 [09 小时] 简介;一些基本函数的逆变换;求逆变换的一般方法;求逆拉普拉斯变换的部分分式法和卷积定理;用于求常系数线性微分方程和联立线性微分方程的解的应用 单元 3:傅里叶变换 [09 小时] 定义 – 积分变换;傅里叶积分定理(无证明);傅里叶正弦和余弦积分;傅里叶积分的复数形式;傅里叶正弦和余弦变换;傅里叶变换的性质;傅里叶变换的帕塞瓦尔恒等式。 第四单元:偏微分方程及其应用 [09 小时] 通过消除任意常数和函数形成偏微分方程;可通过直接积分解的方程;一阶线性方程(拉格朗日线性方程);变量分离法 - 用于寻找一维热流方程的解
颗粒和刚体的物理学运动学(位置,线性和旋转运动中的速度和加速度);颗粒和刚体的动力学(力和力矩,牛顿运动定律);刚体的平衡;拉格朗日方程;节能原则(工作,能源和权力);热力学;热运输(传导,对流,辐射);电磁学(Coloumb的法律,生物 - 萨瓦特法律,高斯法律,麦克斯韦法律)。