机电系统系统的特征是它们的组件与不同技术领域之间的协同相互作用。这些相互作用使系统能够获得更多的功能,而不是独立考虑的组件的功能之和。传统的设计方法不再足够,并且需要新的协同和多学科的设计方法,并在不同学科的专家之间进行密切合作。sysml是用于系统建模的通用多视图语言,并被确定为对此工作的支持。在本文中,提出了一种基于SYSML的方法。此方法包括两个阶段:一个具有外部观点的黑匣子分析,提供了全面且一致的设置要求,以及逐渐导致系统内部体系结构和行为的白盒分析。
采用这种主要方法时,将基板放置在反应器中,并暴露于含有要沉积材料的热不稳定气体中。在反应器的高温(高达 1250 o C)下,基板表面的化学反应将气体分解为气态和固态成分。固态成分以非常薄且均匀的薄膜形式沉积在基板表面上,气态成分则被吸走。
抽象的精度致动是高端设备域中的基础技术,其中中风,速度和准确性对于处理和/或检测质量,航天器飞行轨迹的精度以及武器系统罢工的准确性至关重要。压电执行器(PEAS)以其纳米级的精度,柔性中风,对电磁干扰的耐药性和可扩展结构而闻名,在各个领域都广泛采用。因此,本研究的重点是涉及超高精度(千分尺及以后),微小尺度和高度复杂的操作条件的极端情况。它提供了有关豌豆的类型,工作原理,优势和缺点的全面概述,以及它们在压电式智能机电系统(PSMS)中的潜在应用。要解决高端设备字段中极端情况的需求,我们已经确定了五个代表性的应用领域:定位和对齐,生物医学设备配置,高级制造和处理,振动缓解,微型机器人系统。每个区域进一步分为特定的子类别,在该类别中,我们探讨了基本关系,机制,代表性方案和特征。最后,我们讨论了与豌豆和PSMS有关的挑战和未来发展趋势。这项工作旨在展示豌豆应用的最新进步,并为该领域的研究人员提供宝贵的指导。
MEMS 技术已广泛应用于消费电子、汽车工业、航空航天和生物医疗设备等众多领域。在消费电子领域,MEMS 传感器(如加速度计和陀螺仪)用于智能手机和平板电脑的方向感测和运动跟踪。在汽车工业中,MEMS 传感器用于安全气囊系统、轮胎压力监测系统和电子稳定控制系统等,以提高安全性和性能。在航空航天工业中,MEMS 传感器用于导航系统、惯性测量单元和振动监测系统,以提高飞机的性能和可靠性。
摘要:基于二维(2D)材料的微型和纳米机电系统(MEMS和NEMS)设备与硅基碱对应物相比揭示了新型功能和更高的灵敏度。2D材料的独特性能增强了对2D材料基于纳米机电设备和传感的需求。在过去的几十年中,使用与MEMS和NEMS集成的悬浮2D膜出现了质量和气体传感器,加速度计,压力传感器和麦克风的高性能敏感性。通过MEMS/NEMS传感器提供了积极感测的微小变化,例如在动量,温度和应变的小小变化的被动模式下传感。在这篇综述中,我们讨论了NEM和MEMS设备中使用的2D材料的材料准备方法,电子,光学和机械性能,除了设备操作原理外,制造路线。
轨迹规划对于智能机器人和机电系统的研究是一个至关重要的,具有挑战性的问题,这些问题在现代制造过程中起着举足轻重的作用,尤其是在工业4.0的框架内[1]。的确,在每个机器人应用中,不仅需要定义一条路径,还需要根据任务要求和机器人的限制来保证系统可行且安全的操作[2]。在文献中已经开发和调查了许多解决轨迹计划问题的方法,其应用涵盖了工业,协作以及更一般的自主和智能机器人和机电系统[3,4]。可以通过考虑不同的目标来计划机器人系统的运动定律。可以评估适当的运动定律的设计,例如,与机器人或机电系统系统的摄入量有关,因此,可以根据机器人在时间消耗方面的最佳性能来确定最佳轨迹[5-7]。应用的另一个有趣的领域是振动还原。的确,许多自动机器和机电应用需要在规定的操作期间平滑而混蛋的轨迹[8-10]。此外,工业机器人技术的新兴方案,例如协作机器人技术和人类机器人的互动,要求对机器人轨迹计划进行高级策略,以确保在与人类操作员一起工作的机器人执行任务期间的平稳性,安全性和流利性[11-13]。最后,机器人和机电系统系统的轨迹计划也与此类系统的运动控制问题紧密相结合,以确保执行所需的运动法的高性能[14,15]。在本期特刊中,我们邀请了研究人员为智能机电系统,自主机器,工业和协作操纵器以及可移动和可重新配置的机器人提供与智能机电系统,自主机器,工业和协作机器的轨迹计划有关的文章做出贡献。已经寻求了有关这些主题的原始研究论文,重点介绍了这些主题的理论研究和现实世界的应用。合适的主题包括但不限于以下内容:路径和轨迹计划,动态建模,能源效率,振动抑制,平滑轨迹,运动曲线优化,运动控制,智能机器人和机电系统,协作机器人系统,协作机器人技术以及人类 - 机器人相互作用的运动计划。
作弊,窃/学术犯罪学术完整性是学习活动的重要组成部分。学生必须清楚地了解他们期望独自工作的课程活动(以及独自工作的含义)以及他们可以合作或寻求帮助的活动;请参阅上面的信息,并在需要时向讲师询问澄清。任何未经授权的寻求帮助或协作形式都将被视为学术罪行。大学政策指出作弊是一种学术罪行。如果您被骗了,将不会有第二个警告。学生必须用自己的话来写自己的论文和作业。每当学生从其他作者那里掌握一个想法或文本文字时,他们都必须在适当的情况下使用引号和适当的引用(例如脚注或引用)来承认自己的债务。窃是主要的学术罪行。学术犯罪是认真对待的,并受到学术惩罚的参加,其中可能包括驱逐该计划。学生被指示阅读适当的政策
描述:本课程是与最先进的CMOS技术中集成电路(IC)相关的概念的介绍。微电子和非常大规模的集成(VLSI)的连续进步使整个电子系统在单个芯片(SOC)上成为可能。现代VLSI IC每芯片包含超过20亿个组件。半导体设备的设计和制造带来了独特的挑战,尤其是在概念和设计水平上,因此寻求计算机辅助设计(CAD)方法来帮助管理这些复杂的设计。特别是,本课程介绍了CMOS半导体设备,IC设计背后的物理原理,数字逻辑门的设计和分析以及使用专业CAD工具进行IC设计。
3 中央水利电力研究站,印度浦那 摘要:微机电系统 (MEMS) 已成为一项突破性技术,广泛应用于从消费电子产品到医疗保健和商业等各个行业。本研究重点介绍了基本概念、操作原理和多种 MEMS 应用。MEMS 技术结合了小型机械和电气部件,可创建微米或纳米级的设备。MEMS 设备以其感知、控制和改变微小物理过程的能力而著称。它们将微电子技术与微加工方法相结合,构建了重量轻、节能且价格合理的复杂系统。MEMS 非常重要,因为它们可以解决许多不同领域的难题。MEMS 加速度计、陀螺仪和压力传感器彻底改变了我们与消费电子产品互动的方式,使手势识别、图像稳定和精确导航等功能成为可能。由于基于 MEMS 的传感器和执行器,在医疗保健领域,用于监测生命体征、药物输送系统和微创手术器械的可穿戴设备的出现已成为可能,从而改善了患者护理和治疗效果。在汽车领域,MEMS 对于安全功能的实现也至关重要,包括安全气囊展开、轮胎压力监测和车辆稳定性控制。MEMS 技术还对能量收集系统、电信、航空应用和环境监测产生了重大影响。温度、压力、湿度、气体浓度和加速度是 MEMS 传感器用于测量和调节的因素之一。这些应用对提高生产率、降低成本和提高整体性能具有重大影响。然而,MEMS 技术的发展并非没有困难。技术挑战包括材料选择、设备集成和制造方法。其他持续存在的问题包括保证可靠性、耐用性和在大规模生产过程中保持高产量。索引术语 - MEMS、制造、监测、设备、蚀刻。
学术行为和支持系统声明 学术行为 剽窃——将他人的观点当作自己的观点,无论是逐字逐句还是用自己的话重述——都是严重的学术违规行为,后果严重。请熟悉 SCampus 第 11 节“违反大学标准的行为”中关于剽窃的讨论 https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions/。其他形式的学术不诚实行为同样不可接受。有关 SCampus 和大学关于科学不端行为的政策的更多信息,请参阅 http://policy.usc.edu/scientific-misconduct/。大学不容忍歧视、性侵犯和骚扰。我们鼓励您向公平与多元化办公室 http://equity.usc.edu/ 或公共安全部 http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us 报告任何事件。这对于整个 USC 社区的安全非常重要。大学社区的其他成员(例如朋友、同学、顾问或教职员工)可以帮助发起报告,也可以代表其他人发起报告。妇女和男子中心 http://www.usc.edu/student-affairs/cwm/ 提供 24/7 保密支持,性侵犯资源中心网页 sarc@usc.edu 介绍了报告选项和其他资源。支持系统 USC 的许多学院为需要学术写作帮助的学生提供支持。请咨询您的顾问或项目工作人员以了解更多信息。母语不是英语的学生应咨询美国语言学院 http://dornsife.usc.edu/ali,该学院专门为国际研究生提供课程和讲习班。残疾人服务和项目办公室 http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html 为残疾学生提供认证并帮助安排相关住宿。如果官方宣布的紧急情况导致无法前往校园,南加州大学紧急信息 http://emergency.usc.edu/ 将提供安全和其他更新,包括如何通过黑板、电话会议和其他技术继续教学。