Cox Communications (Cox) 感谢您考虑成为 CASF 宽带基础设施项目的潜在合作伙伴。此次合作机会提供了持久的合作伙伴关系,可实现 Cox 的网络扩展计划,并使 Cox 能够扩展我们当前的光纤网络。此次合作使我们能够增加住宅和商业社区的宽带服务接入,同时增加并增强网络弹性,造福加利福尼亚的社区。我们计划服务的社区位于圣地亚哥县。项目区域目前可用的网速为 100/20 mbps,平均家庭收入为 127,502 美元。如果中标,拟议项目将扩展我们当前的网络,将光纤宽带互联网部署到 Fallbrook、Bonsall 和 Oceanside 市内及周边未提供服务的地点。为了完成社区内所有服务地点的光纤建设,我们将建造 75 英里的新光纤,覆盖 488 个住宅地点、48 家企业和 3 家主要机构,并将其连接到 Cox 现有的光纤网络。我们建筑项目中使用的主要基础设施包括标准无源光网络 (PON) 架构内的空中和地下光纤组件。这包括相关结构,例如保险库、机柜、机箱/外壳和其他设备。根据我们对拟议建筑区域的估计,空中和地下设施之间的预期分布预计为 80% 空中和 20% 地下。但是,考虑到电线杆故障和其他可能需要开沟的障碍物等潜在挑战,我们已将实际建筑预测调整为 60% 空中和 40% 地下,以考虑此类情况。Cox 计划使用我们签约的第三方建筑工人来执行光纤安装。这包括劳动力和材料(即新的空中和地下光纤、优质地下光纤、电线杆准备和拼接),总计 5,668,900.51 美元的成本。该项目的许可成本估计为 2,856,336.98 美元;这些许可证包括高速公路地下、高速公路电线杆、铁路和电线杆许可证。内部劳动力将用于监督该项目,预计成本为 16,055,934.92 美元。此构建所需的硬件包括 OCML(光纤配线集线器柜)、MDM(移动设备管理)机柜和 OLM XGS PON(光网络终端),成本为 3,318,380.78 美元。架空光纤成本是综合成本,可能包括:
一般描述 DNx-AI-256 是高性能双通道同步器/解析器输入和输出板,与 UEI 强大的 Cube、RACKtangle 和 FLATRACK I/O 机箱兼容。256 系列板在功能上与 DNx-AI-255 类似,但为需要它的应用提供了更多的输出驱动。DNx-AI-256 系列也是 LVDT/RVDT 的理想解决方案。该板可以配置为两个输入、两个输出或一个输入和一个输出。该板提供 2 个输入通道,可监控 3 线同步器或 4 线解析器。该板的高精度电路与每个通道独立的 16 位 A/D 转换器相结合,可实现高达 ± 2.6 弧分的测量精度。输入的读取速率最高可达激励频率(最大 10 kHz)。每个通道均提供自己的可编程参考,输出可独立编程,最高可达 19.8 Vrms,频率范围为 50 至 10 kHz,最高可达 2.4 VA。使用外部参考时,DNR-AI-256 可在一个参考周期内自动调整模拟输出,以获得可变幅度和频率参考。DNx-AI-256 还提供两个同步器/解析器/RVDT/LVDT 接口通道,非常适合用于姿态指示器等设备,或作为各种同步器或解析器输入设备的测试源。每个输出均接受独立的参考信号,并提供 16 位输出分辨率。无需外部缓冲,每个通道将以 3.0 VA 驱动高达 19.8 Vrms(总板输出必须小于或等于 5 VA)。可以监控每个输出通道消耗的电流,以确认接线正确,同步器/解析器或 RVDT/LVDT 的线圈符合预期。该板在通道之间以及 I/O 连接和底盘之间提供 350 Vrms 隔离。与所有 PowerDNA/UEILogger I/O 板一样,DNx-AI-256 可在恶劣环境下运行,并已通过 3g 振动、50g 冲击、-40 至 +70 °C 温度和高达 70,000 英尺的高度测试。包含软件,提供全面且易于使用的 API,支持所有流行操作系统,包括 Windows、Linux 和大多数实时操作系统(如 QNX、Intime、VXworks 等)。此外,UEIDAQ 框架(更高级别的 Windows 驱动程序)为使用多种流行 Windows 编程语言创建应用程序的用户以及 LabVIEW 和 MATLAB/Simulink 等数据采集软件包提供全面支持。由于 DNR-AI-256 具有高功率输出,因此应在其旁边的插槽中放置一个风扇装置以防止过热。风扇装置 DNR-FAN-925 包含在 DNR-AI-256 中。
太空运输系统Haer No.TX-116第337页V.固体火箭助推/可重复使用的固体火箭电机简介Twin Solid Rocket Booster(SRB)(SRBS),设计为STS的主要推进元件,在发射的前两分钟内为航天飞机提供了80%的升空推力。他们燃烧了超过2,200,000磅的推进剂,并产生了3600万马力。1487每个SRB助推器都由电动机和非运动段组成。电动机段(称为实心火箭电机(SRM)),后来更名为“可重复使用的固体火箭电机”(RSRM),其中包含燃料来为SRB供电。1488 SRMS/RSRMS是有史以来最大,唯一的固体螺旋桨火箭电机,也是第一个用于恢复和重复使用的设计。主要的非运动段包括鼻盖,frustum以及前进和后裙。这些结构成分包含电子设备,可在升空,上升和ET/SRB分离期间引导SRB,并放置了降落伞,这使可重复使用的助推器的下降减慢了从航天器的抛弃后进入大西洋。从历史上看,SRM/RSRM开发遵循与非运动SRB组件分开的路径。在整个SSP中,犹他州Promontory的Thiokol是SRM/RSRM的唯一制造商和主要承包商。超过400个供应商,位于37个州和加拿大,提供了金属组件,密封,隔热材料,面料,油漆和粘合剂。此外,六家公司还提供了构成RSRM推进剂的主要成分。1489 Thiokol向NASA提供了推进剂的前进电机盒细分,并安装了点火器/安全和手臂(S&A)设备;两个推进剂的中心运动案例段;加载的船尾电动机箱段,安装了喷嘴;表壳加强圈;以及安装了遣散系统的船尾出口锥体组件。其中包括犹他州锡达拉皮兹(Cedar Rapids)的美国太平洋(AMPAC)(高氯酸铵);德克萨斯州自由港的陶氏化学(环氧树脂);德克萨斯州罗克代尔的铝业(铝粉);伊利诺伊州内珀维尔的Toyal America(球形铝制粉末);位于肯塔基州路易斯维尔的美国合成橡胶公司(ASRC)(聚丁二烯 - 丙烯酸 - 丙烯酸丙烯腈Terpolymer [PBAN]);宾夕法尼亚州伊斯顿的元素色素(氧化铁)。对于最终的飞行电动机,三菱阿根廷铸币厂取代了Alcoa提供的铝粉,而高氯酸铵则由HCL-Olin在Becancour,Becancour,Quebec,Quebec,加拿大,加拿大和纽约州尼亚加拉瀑布提供。
一辆用于运输人员和货物的车辆,汽车通常在道路上使用发动机进行电源运行。如今,汽车通过提供便利,舒适性和效率来在日常生活中发挥至关重要的作用。自发明以来,汽车发生了重大变化。第一辆汽油动力汽车是由卡尔·本茨(Karl Benz)于1885年发明的,标志着连续创新的开始。从蒸汽动力的车辆到现代电动汽车,汽车的历史充满了关键的发展,这些发展塑造了我们的生活方式和旅行习惯。本文探讨了汽车历史上的关键时刻,分类,重要系统及其运作方式,以帮助了解汽车的演变及其在现代生活中的作用。讨论包括汽车的历史,它们的分类,关键部分和系统,以及它们工作方式的概述。第一辆汽车由卡尔·本茨(Karl Benz)于1885年发明,由单缸发动机提供动力,每小时可能达到10英里。它以其轻巧的设计和转向系统而闻名。在1888年,贝莎·奔驰(Bertha Benz)在奔驰专利汽车Wagen进行了长时间的旅行,推广了汽车,并导致了Benz&Cie的首次商业作品。随着时间的流逝,汽车通过创新和不断变化的需求而发展。由蒸汽动力,汽油动力,柴油动力和混合动力汽车的时代均有助于现代汽车的发展。关键人物,例如Nicolas-Joseph Cugnot,Richard Trevithick,Karl Benz,Gottlieb Daimler,Rudolf Diesel和其他人为汽车历史做出了重大贡献。了解汽车的历史和运作能力可以为它们对现代生活的影响及其持续发展提供宝贵的见解。汽车的开发是由于需要更快,更轻,更有效的车辆的需求,从而创造了不同类型的发动机和燃料。从蒸汽动力汽车到混合动力汽车,每个时代都建立在上一辆汽车上,从而导致了我们今天看到的各种汽车。通过检查汽车的历史和关键系统,我们可以欣赏它们在我们的日常生活中扮演的重要角色及其未来创新的潜力。混合技术通过减少汽油和电力的燃油消耗和排放来彻底改变汽车行业。第一款商业上成功的混合动力汽车丰田普锐斯(Toyota Prius)于1997年推出,标志着向环保车辆的转变。电动汽车(电动汽车)由于推动清洁能源而闻名,早期电动汽车的历史可以追溯到19世纪后期。现代进步,尤其是特斯拉的进步,使电动汽车更加可行。尽管具有可持续性,EVS仍面临电池技术和充电基础设施的限制。汽车有多种类型,每种都为特定的需求和功能而设计。这些车辆可以根据传输系统,车轮数量,燃油类型等进行分类。例如,汽车可以具有手动,自动或CVT传输。车轮的数量还可以将汽车分类为两轮车,三轮车,四轮摩托车,六轮摩托车,甚至具有超过六个车轮的车辆。汽车由不同的燃料提供动力,包括汽油,柴油,电气和混合动力。这会导致各种类型的汽车,每辆汽车都基于它们使用的燃料。此外,可以将车辆分类为由内燃机(ICE),电动机或混合动力系统提供动力的车辆。发动机的位置和驱动器的类型还导致各种配置,例如前引擎前轮驱动,后引擎后轮驱动或中引擎后轮驱动。汽车车身风格和复杂的系统汽车可以根据其身体样式进行分类,包括敞篷车,越野,半转换,掀背车,轿跑车,轿车,轿车,轿车,小接口和交叉。汽车由各种复杂的系统和组件组成,每个系统都在确保车辆平稳运行方面发挥着至关重要的作用。发动机是通过内部燃烧产生动力,将燃料和空气转换为机械能的重要组件。曲轴在将扭矩从发动机转移到变速箱中起着重要作用。传输系统通过从发动机传输到车轮来调节速度和扭矩。燃油系统由关键组件组成,例如燃油箱,燃油泵,化油器和喷油器。这些组件共同起作用为发动机提供燃料以燃烧。汽车的主要内部零件,包括曲轴,电池,点火线圈和火花塞,都可以一起移动。位于发动机块上的曲轴使用电池中的电源将发动机的能量转换为运动。1。22。23。它由驱动发动机飞轮的电动机和小齿轮组成。汽车还需要一个可靠的制动系统来安全地放慢速度。该系统具有多个关键组件,例如脚步井中的刹车踏板和每个轮子上的制动卡钳。制动卡钳使用液压活塞和金属壳体施加压力,以控制制动。除了这些必需品之外,还有其他关键部分,例如主缸,制动液,制动线,制动器助力器,排气歧管,消音器,轮胎,轮子轮毂,底盘和车身面板,都促进了汽车的功能。底盘是所有车辆组件的结构框架,在发动机,悬架和车身面板安装在其上时提供了支撑。汽车本质上是由相互联系的系统组成的,例如发动机,电气系统,制动系统,排气系统,转向系统,悬架,轮胎和机箱,可帮助其有效地移动。车辆运动的旅程始于其发动机,该发动机通过内燃机将燃料转化为机械能,从而将化学能量转化为动能并启动传统车辆的功率流。相比之下,电动汽车从电池组开始,将电能存储为DC,然后通过电源逆变器转换为AC,以便电动机为电动机供电,从而产生机械能以驱动车轮。变速箱在调节发动机的功率方面起着至关重要的作用,并根据车辆的速度和负载对其进行调整。活塞运动 - 各种类型,周期和配置2。通过使离合器接合,发动机的功率将平稳地转移到变速箱上,从而实现了精确的齿轮移动,并有效地控制了扭矩和速度。驱动轴然后将旋转运动从变速箱传输到差速器,以确保不间断的功率流。差速器从传动轴接收功率,并将其分配到车轮,调整每个车轮的旋转以允许不同的速度,尤其是在轮流时。连接到差速器,车轴直接传递到车轮的传输功率。最终,车轮将旋转能量转换为正向运动,轮胎提供了必要的牵引力来抓住道路,从而将车辆前进。转向涉及一个组件的顺序系统,这些系统会改变前轮的方向。它是从驾驶员使用方向盘启动转弯运动开始的,该运动通过转向柱传输到转向器。这种机制将旋转运动转换为线性运动,移动的拉杆将推动和拉动以根据需要转动车轮。转向指关节安装在车轴上,允许车轮根据拉杆的输入进行枢转和转向。制动对于车辆的控制和安全至关重要,涉及各种系统以阻止汽车的系统。当驾驶员按下制动踏板时,该过程始于制动动作。取决于车辆,涉及不同的制动系统,包括机械,液压或气动系统,每个系统都具有不同的机制,可以在每个车轮上摄制制动器。24。25。25。车辆中的制动系统在确保道路上的安全和控制方面起着至关重要的作用。制动系统有两种主要类型:液压和气动。液压制动器使用流体压力将力从制动踏板传输到车轮,而气动制动器则使用压缩空气。两种类型都涉及各种组件,包括主缸,卡尺,鼓或鞋子,它们共同使用,将动能转化为热量,从而减慢车辆。制动过程涉及几个关键要素:液压或气动流体压力,制动垫和转子(用于盘式制动器)以及与道路相互作用的轮胎。每个组件在确保有效制动和整体车辆性能中起着至关重要的作用。SI和CI发动机的燃油系统主要组件3。排气系统目标和减少排放的关键组件4。润滑系统目标,组件和冷却机制5。冷却系统目标,组件和恒温器法规6。动力传输系统目标和关键组件7。转向系统目标,组件和动力转向系统8。制动系统目标,组件和主缸功能9。悬架系统目标,组件和减震器设计10.这些组件共同调节车辆的气候和整体性能。信息娱乐系统为乘员提供信息和娱乐服务,例如导航,流量更新和多媒体接口。示例包括仪表板显示器和后座信息娱乐系统。轮胎和轮胎可为电气和电子系统提供所有必需的能量•稳健,光线•零件•电池•电池•交流发电机•电压调节器•熔断器/电缆•点火开关•驱动皮带•驱动器系统和电气启用范围和电子启示器(EC)和电子启用(EC),驱动器•驱动器(驱动器)(驱动器)(驱动器)(驱动器)和电子启用(EC),并将电源组合(EC)组合(EC)和电子设备(Ection Verions and Ontors)(驱动器)(驱动器),并将电源组合(EC)和电子设备(EC)组合(EC)组合(EC)和电子设备(Ection Verions and Doction and)(驱动器)(EC)。内部照明系统旨在照亮车辆的内部,以保持居住者的舒适性和安全性。这些系统涉及各种组件,包括接线图和安装过程。配件控制系统管理不同车辆配件的电气操作,例如门,后备箱,窗户,镜子,雨刮器和大灯。这些系统通常具有自动或集成控件,以简化用户交互。V2X通信系统(远程信息处理)使车辆能够与其他汽车,道路基础设施,行人和路边服务共享关键的实时信息,以增强安全,保障,交通流量,舒适和娱乐。该技术包括缓解碰撞和远程诊断等功能。车辆诊断/检查系统通过程序和工具(例如车载和远程诊断,测试设备和定期检查)促进了标准化的车辆诊断和检查。
本章探讨了自动驾驶研究的当前状态,这是在自动出租车要求的背景下设定的。根据开发团队的科学出版物和自我报告提供了全面的概述,研究了环境感知,自我感知,任务成就,本地化,合作,地图使用和功能安全等方面。虽然某些方法在很大程度上依赖于GPS和MAP数据等卫星系统,但很少关注环境感知和场景的理解。尽管近年来对自动驾驶的令人印象深刻的证明,但许多挑战仍未解决,尤其是在自动驾驶公共道路时。本书可深入了解高级驾驶员辅助系统(ADA)和自动驾驶的基本原理,技术细节和应用,涵盖了ADAS系统设计,高级材料,人工智能和可靠性问题等领域。以学术和行业专家的贡献为特色,该全面参考将读者彻底了解ADA的各个方面,突出了未来的研究和发展的关键领域。作者Yan Li博士是Intel Corporation的高级职员工程师,在微电总包装相关的技术解决方案以及质量和可靠性问题方面拥有丰富的经验。在此处给出的文章文本:Li博士参与了矿物质金属和材料协会(TMS),美国金属学会(ASM)和电子设备故障分析协会(EDFAS)等专业协会。此选择可能会对道路事故产生重大影响。她自2011年以来一直是TMS年度会议的组织者,也是综合电路国际物理与失败分析技术委员会成员(IPFA)。Li博士在微电子包装中发表了20多篇论文和两份专利,并共同编辑了一本关于3D微电子包装的书。Shi博士是Lyft 5级自动驾驶部门的主要硬件可靠性工程师。他在加入Lyft之前已经在半导体和消费电子产品上工作了15多年。Shi博士担任过各种职务,包括集成工程师,高级可靠性工程师,员工质量和可靠性工程师以及过程工程师。他获得了博士学位。德克萨斯大学奥斯汀分校的物理学博士学位和中国科学技术大学物理学学士学位。先进的驾驶员辅助系统(ADA)和自动驾驶汽车(AV)的潜在影响很大。通过减少危险的驾驶行为,交通拥堵,碳排放和成本,同时改善道路安全性和独立性,ADAS和AV具有重塑运输的潜力。但是,有许多挑战,包括新技术,非自动级零件的必要性以及现有自动级组件的新任务配置文件。给定的文本似乎讨论了影响运输,环境和安全的人类活动的各个方面。要点包括:日常生活涉及休息,社会联系或工作等个人需求之间的决策。至关重要的方面是随着自动化水平的增加而需要复杂的技术。温室气体,许多国家有计划在2050年到2050年达到零零排放的计划对美国温室气体排放的贡献最大自2020年成立以来,交通拥堵,碳排放和改善道路安全Lyft的自动驾驶部门已取得了显着的里程碑。 拥有超过100,000辆带薪骑手旅行,该平台现在是美国最大的公共自动驾驶商业平台之一[32],Lyft也已开发了四代内部员工测试的自动驾驶车辆平台(图5)。 图像展示了由Lyft的5级部门设计的两辆自动驾驶汽车,该车建立在福特Fusion和FCA Pacifica模型之上。 尽管驾驶员辅助系统和自动驾驶功能取得了进步,但许多挑战仍然存在。 由SAE J3016 [33]定义的六级驾驶自动化框架突出了所涉及的复杂性(表1)。 随着自动化水平的上升,对高级技术(例如感知,计划和控制子系统)的要求也会增加。 感知子系统依赖于传感器来检测车辆外部的对象并将其定位在环境中。 典型的传感器包括相机,GPS,IMU,LIDAR,雷达等。 由于其优点和缺点,各种传感器的组合并不罕见。 [35]。温室气体,许多国家有计划在2050年到2050年达到零零排放的计划对美国温室气体排放的贡献最大自2020年成立以来,交通拥堵,碳排放和改善道路安全Lyft的自动驾驶部门已取得了显着的里程碑。拥有超过100,000辆带薪骑手旅行,该平台现在是美国最大的公共自动驾驶商业平台之一[32],Lyft也已开发了四代内部员工测试的自动驾驶车辆平台(图5)。图像展示了由Lyft的5级部门设计的两辆自动驾驶汽车,该车建立在福特Fusion和FCA Pacifica模型之上。尽管驾驶员辅助系统和自动驾驶功能取得了进步,但许多挑战仍然存在。由SAE J3016 [33]定义的六级驾驶自动化框架突出了所涉及的复杂性(表1)。随着自动化水平的上升,对高级技术(例如感知,计划和控制子系统)的要求也会增加。感知子系统依赖于传感器来检测车辆外部的对象并将其定位在环境中。典型的传感器包括相机,GPS,IMU,LIDAR,雷达等。由于其优点和缺点,各种传感器的组合并不罕见。[35]。通过利用传感器数据和机器学习算法,对象进行检测,分类和跟踪(表2)。感知子系统的信息传递给了计划子系统,该计划子系统生成了具有特定目标位置和速度的投影路点。控制子系统然后根据此数据发送加速,制动或转向消息。这些自治子系统需要通过CPU和GPU实现的强大计算功能。各种架构在市场上共存,包括集中和分布式方法。热管理对于高级驾驶员辅助系统和由于涉及巨大的计算活动而具有自动驾驶功能至关重要。已经引入了液体冷却子系统,其中包含定制设计的冷板,并带有新的悬挂材料和过程(图6)。几家公司遇到了与热管理相关的类似技术挑战,例如冷板设计和热接口材料选择。冷板的屈曲或变形会对热性能产生负面影响,可能导致电短裤和火灾危害。系统中的制造过程或颗粒中的过多残留物会堵塞散热器并阻碍冷却液流动。实际道路上的拐角处对自动驾驶汽车构成挑战。为了减轻这些问题,公司正在广泛测试其系统,从而收集感知数据以离线训练机器学习模型。但是,此过程受到空气界面上数据传输速度的限制所阻碍。J. of CAV,2020年。J. of CAV,2020年。因此,许多组织在道路测试期间使用固态驱动器(SSD)来存储感知数据。由于SSD插入和去除的频率高,金属表面可能会磨损,从而冒着数据丢失的风险。在高级驾驶员辅助系统中使用非自动级组件和自主驾驶功能已节省了市场的时间,但引入了设计挑战。像DRAM内存之类的组件已被为这些应用所要求,但是它们在振动测试中通常会失败,从而导致系统故障。制造缺陷或材料选择不足也可能导致组件故障。在固定层损坏底盘和金属夹子在机箱上造成的隔热层损坏后,现成的单元(OT)单元失败。Shi等人的研究。[35]强调了将多个GPU并行结合到增强计算能力的潜在优势。这可以通过使用歧管整合单个水块来实现,从而简化冷却液环设计。典型的现成(OT)水块/EPDM垫圈/歧管系统由位于水块上的歧管组成,其中两个组件之间的EPDM垫圈夹在两个组件之间。拧紧后,螺钉会压缩EPDM垫圈,在歧管/螺钉上产生排斥力。但是,如图9a在温度周期式测试中,检测到歧管和水块之间的关节周围检测到冷却液泄漏。如图根据鱼骨图,主要假设表明,EPDM垫圈在高温下经历了压缩组和永久性塑性变形。由于其工作温度较低,因此这种现象对消费电子产品并不是一个关注。本研究中讨论的故障模式对自动驾驶汽车的组件和系统资格具有影响。与传统汽车平均每天驾驶不到一小时的驾驶不同,诸如机器人税之类的自动驾驶汽车的日常运营时间将大大更长。10a,这种增加的运营时间减少了达到10,000个小时数的年数。假设车速为每小时35英里(MPH),图。10b表明,随着日常运营时间的增加,自动驾驶汽车将在更少的时间内达到100,000英里。例如,如果一个机器人每天驾驶11个小时,则达到这一里程碑大约需要0.7年。此分析表明,从“数年”的角度来看,自动驾驶汽车的寿命可能比传统汽车的寿命短。这个结论与福特先前的说法保持一致,该声明预测车辆每四年将耗尽和压碎。将在以下各章中更详细地探讨基于任务配置文件的测试计划。作者旨在解决与高级驾驶员辅助系统和自动驾驶功能有关的硬件子系统设计,制造,测试和可靠性分析的出版物的有限可用性。AI和自动驾驶汽车的章节摘要:该系列审查了高级驾驶员辅助系统(ADAS)和自动驾驶汽车的应用。章节还涵盖了安全标准,方法论,挑战(边缘案例,重型尾部分配),公开可用的培训数据集,开源模拟器和验证过程。高级驾驶员辅助系统(ADA)依赖于各种技术,例如LIDAR,雷达,电化学功率系统和车载显示技术,以进行安全导航。对这些技术进行了审查,以分析其能力,挑战和应用。第1章探讨了LIDAR传感器的最新技术,涵盖了关键指标,例如检测范围,视野和眼部安全。讨论了各种激光雷达映射方法,包括机械旋转扫描仪和频率调节连续波(FMCW)LIDARS。第2章回顾了雷达技术,研究其体系结构,类别(单位,bistatic和多键雷达),波形设计以及FMCW雷达的链接预算分析。简化的示例用于说明主题。第3章侧重于ADAS车辆的电化学电源系统,讨论电池类型,化学,结构和过程。还提供了电池管理系统和故障模式分析,以及用于电池测试的行业标准的比较。第4章回顾了各种车载显示技术(LCD,TFT LCD,OLED,LED)及其架构。诸如光学性能,外观,集成和可靠性之类的要求,以及规范,功能,质量和验证等挑战。第5章探讨了数据中心使用的硬盘驱动器的当前状态和挑战。组件和材料,包括各种解决方案,以实现较高的面积数据密度,例如微波炉辅助磁记录和热辅助磁记录。工程师角色涵盖了产品生命周期的硬件可靠性的各个方面。它需要风险评估方法,例如FMEA,断层树分析和应力强度测试,加速且高度加速的生活测试技术以及用于数据分析的统计方法。此外,工程师需要执行故障分析并实施纠正措施,计算系统可靠性指标并评估可修复的系统。使用特定的硬件组件(例如相机,冷板和水块)有助于说明这些概念。章节“高级驱动器 - 辅助系统中的故障分析”深入了电子设备的分析流,讨论了各种电气测试技术,体格检查方法和材料表征程序。它涵盖了几种成像技术,包括I-V曲线跟踪和基于X射线的光谱法。本书还回顾了影响半导体套件的腐蚀机制,尤其是专注于铜和金球键。其他值得注意的来源包括B. Schlager等。此外,还简要概述了先进的驾驶员辅助系统和自动驾驶功能,以及对其他章节内容的审查。自动驾驶汽车对温室气体排放的影响,通过分析包括学术期刊和行业报告在内的各种来源进行了对自动驾驶汽车技术的最新进步的回顾。研究研究了2016年至2021年之间在Google Scholar上发表的论文,重点介绍了高级驾驶员辅助系统(ADAS),自动驾驶和硬件可靠性等主题。该评论强调了几项关键研究,其中包括N. Brese的一项研究,该研究在2019年在IEEE ECTC上提前了汽车电子技术。S. Sun等人进行了另一项值得注意的研究,他研究了MIMO雷达在2020年7月发表的IEEE Signal Processing Magazine文章中对ADA和自动驾驶的优势和挑战。该评论还涉及行业报告,例如2020年12月15日的Lyft新闻稿,该新闻稿宣布了其网络上的下一阶段的自动驾驶汽车。此外,从2020年2月11日起的LYFT报告讨论了经过Aptiv Technology提供100,000次自动驾驶骑行后吸取的经验教训。该研究提到了包括SAE J3016在内的几种标准和准则,该标准和指南提供了分类法和与驾驶汽车驾驶自动化系统有关的术语的定义。的最新传感器模型用于ADA/自动驾驶功能的虚拟测试,发表在SAE INT中。审查还检查了H. Shi等人的论文中讨论的Robo Taxis中的硬件可靠性。在2021年6月至7月的IEEE第71届电子组件和技术会议(ECTC)。另一个相关研究是由F. Chen进行的,他探索了自动驾驶汽车模块/组件的机器人税环境压力和故障模式的硬件可靠性资格。作者承认了几个人的贡献,包括Cruise的Fen Chen,他们分享了他的实验数据,以及提供语法检查的Angel Shi和Charlotte Shi。
AKCEPT数据,执行功能,显示重新塑料并根据需要存储thoz数据或重新塑造的电子设备iz iz iz iz。它是对硬件和软件资源的紧缩,这些硬件和软件资源使thiz用户不断地提供各种功能。硬件iz的物理komponents的物理komponents,例如AZ A处理器,内存设备,监视器,键盘等,而软件IZ IZ一组会通过硬件资源适当地使用Funcion的训练或指令。Thiz Quipooter具有三个ImportInt Komponent:输入单元,中央处理单元(CPU)和输出单元。将在下面讨论:1。输入单元:附加到Thiz Compooter的输入设备的输入单元Konsist。这些设备将输入输入,并将其konvert konvert到Th Quipooter unordands的二进制语言中。一些常见的输入将AR键盘,鼠标,操纵杆,扫描仪等分离2。中央处理单元(CPU):onz th信息iz通过输入设备输入了台式机,处理器对其进行操作。th cpu iz称其为Th Qpooter的大脑,因为它是TH钳子的控制中心。它首先从内存中指令说明,然后对其进行解释,以便知道要做什么。如果需要,请从内存或输入设备获取数据。THEFTER CPU执行或执行所需的KOMPONTAIN,ZEN要么存储TH输出,要么在输出devize上显示它。th cpu haz三个主要的komponents,对不同的funkcions负责:算术逻辑单元(ALU),控制单元(CU)和内存rezisters。算术kalkles包括加法,减法,乘法和分裂。A.算术和逻辑单元(ALU):Alu执行数学kallations并进行逻辑策略。逻辑说明参与了两个数据项的比较,以查看一个iz iz iz更大或更小或相等。Th算术逻辑单元iz th cpu的主要功能是TH CPU的基本构建块。B.控制单元:TH控制单元Koordines和Kontrols TH数据流入和从CPU中进出,以及Kontrols Alu的所有操作,内存Rezisters以及输入/输出单元。iz还负有责任地执行存储在TH程序中的所有指令。它对提取的指令进行解码,对其进行解释并将控制信号发送到输入/输出devized,直到Alu和Memory正确地完成IZ的操作。控制单元充当计算机的中枢神经系统或大脑,为各种组件提供信号以执行指令。CPU中的内存寄存器临时存储处理器使用的数据。这些寄存器的尺寸可以变化(16位,32位,64位等)每个都有一个特定的功能,例如存储数据或说明。用户可以将这些寄存器用于存储操作数,中间结果等。累加器(ACC)是ALU内的主要寄存器,持有操作数的一个操作数。附加到CPU的内部内存都存储数据和指令,并将其分为许多具有唯一地址的存储位置。这允许计算机快速访问任何位置,而无需搜索整个内存。我们可以使用所有这些组件轻松执行任务。程序执行时,将其数据复制到内部内存,并保留在那里,直到执行结束为止。存储器单元是永久存储数据和指令的主要存储组件,以便于检索。输出设备(例如监视器,打印机和绘图器)附着以形成输出单元,将CPU转换为可读格式的二进制数据。输出单元接受来自CPU的信息,并以用户友好的格式显示。计算机的特性包括速度 - 能够每秒执行数百万计算 - 精度,勤奋,多功能性和存储容量。计算机可以精确处理复杂的任务,同时执行多个操作,存储大量数据或说明,并根据需要检索它们。总而言之,计算机已经使用了多年,并广泛传播其用法。三个基本组件是输入单元,CPU和输出单元。但是,计算机功能中还有其他关键组件。内存单元,控制单元以及算术和逻辑单元启用复杂操作。常见问题解答:什么是输入单元?输入单元可让用户输入数据并命令到计算机中。它如何工作?输入单元将用户操作或数据转换为计算机处理的电信号。什么是CPU?CPU通过执行程序指令执行大多数处理任务。其主要部分是算术逻辑单元(ALU),控制单元(CU)和寄存器。CPU如何处理数据?它从内存中获取指令,解码它们,执行指令,然后存储结果。计算机硬件包括物理组件,例如CPU,RAM,主板,存储,图形卡,声卡,计算机箱,监视器,鼠标,键盘和扬声器。软件是书面指令,可以由硬件存储和运行。硬件由软件指示执行命令或说明。两者的组合形式可用的计算系统。早期计算设备可以追溯到17世纪。法国数学家布莱斯·帕斯卡(Blaise Pascal)设计了一种基于齿轮的设备,用于增加和减法,销售约50款。阶梯式的Reckoner是由Gottfried Leibniz发明的,到1676年,可能会分裂和乘。但是,由于设计缺陷和制造局限性,它并不是很有用。类似的设备一直在使用直到1970年代。在19世纪,查尔斯·巴巴奇(Charles Babbage)设计了一种机械装置,用于计算多项式和从未构建的通用计算机。最早的计算机合并了用于输入和输出,内存,算术单元和原始编程语言的打孔卡。Alan Turing于1936年开发了通用图灵机,以建模任何类型的计算机。证明没有计算机可以解决决策问题。计算机存储是现代计算,连接硬件和软件的基础。布尔代数由乔治·布尔(George Boole)在19世纪中叶发明,构成了电路建模的基础,用于晶体管和综合电路。它包含数十亿个小晶体管。在1945年,艾伦·图灵(Alan Turing)设计了自动计算引擎,而约翰·冯·诺伊曼(John von Neumann)开发了冯·诺伊曼(Von Neumann)体系结构,该体系结构具有集中记忆,具有优先访问内存的CPU,以及I/O单元。此设计已成为大多数现代计算机的模板。计算机架构优先考虑成本,速度,可用性和能源效率等目标。设计人员必须了解硬件要求和计算的各个方面,包括编译器和集成电路设计。成本限制降低了利润率,由于改进的制造技术,组件的成本下降。基于冯·诺伊曼(Von Neumann)1945年的设计,最常见的指令集架构涉及CISC,RISC,向量操作或混合模式。isas是共享硬件系统,其中有点指示I/O模式。基于RISC的机器受益于使用更少的说明。这降低了复杂性并增加了注册用法。在RISC在1980年代发明后,其管道和缓存的建筑变得越来越受欢迎。他们将CISC体系结构取代了资源受限的设备,例如手机。在1986年至2003年之间,硬件性能提高了50%以上。这允许开发平板电脑和移动设备。在21世纪,绩效提高是通过利用并行性来驱动的。可以通过数据或任务并行性来实现并行性。这是由各种硬件策略(例如指导级并行性和图形处理单元)所容纳的。虚拟内存简化了程序的地址。微结构涉及高级硬件设计问题,例如CPU,内存和内存互连。内存层次结构可确保更快的内存更接近CPU,而存储器则用于存储较慢。计算机处理器会产生热量,这会影响性能和组件寿命。热管理系统,例如空气冷却器和液体冷却器,在计算机中很常见。数据中心使用更高级的冷却解决方案来维持安全的工作温度。现代计算机在性能和热量管理之间面临微妙的平衡。[31]尽管它们可能很昂贵,但可以使用更有效的模型。[32]但是,即使是最强大的处理器也具有不得超过的限制以防止过热。[33]因此,计算机将自动防止其性能,或者在必要时关闭,以保护其硬件免受过热堆积的影响。[34]对于需要创新的冷却系统才能有效运行的较小,更快的芯片尤其如此。[35]除了前面提到的组件(例如监视器和主板)外,还有其他几个关键的硬件元素构成了个人计算机。这些包括CPU,RAM,扩展卡,电源单元,光盘驱动器,硬盘驱动器,键盘,键盘,鼠标等。[36]台式计算机通常配备一个单独的监视器,键盘和鼠标,而笔记本电脑将这些组件集成到一个紧凑的情况下。[37]便携式平板电脑和笔记本电脑由于便利性和多功能性而变得越来越受欢迎。它们通常以触摸屏为主要输入设备,并且可能包括折叠键盘或外部连接以增加功能。[38]一些模型甚至允许用户分离键盘,从而有效地将其变成2英寸1片平板电脑笔记本电脑混合动力车。[39]手机将延长的电池寿命和便携性优先于原始性能。他们通常具有一系列功能,包括相机,GPS设备,扬声器和麦克风,[40],但通常要求用户与较大的计算机相比,在功能方面做出妥协。[41]这些设备的功率和数据连接可能会因特定模型或类型而变化很大。个人计算机比大型机或超级计算机要小得多且价格便宜,这些计算机专为大规模计算而设计,可能耗资数亿美元。相比之下,个人计算机用于浏览互联网和文字处理等日常任务。微型计算机是一种计算机,在大小和价格方面介于这两个极端之间。它是在1960年代开发的,它是大型机和中型计算机的便宜替代品。超级计算机专为特定任务而设计,例如运行复杂的模拟或分析大型数据集,并且由于其高性能功能而可能非常昂贵。仓库比例计算机类似于群集计算机,但在更大的范围内,在软件中用作服务(SaaS)应用程序。他们优先考虑每次操作和电力使用成本,用于硬件和基础设施的价格超过1亿美元。虚拟硬件是模仿物理硬件功能的软件,通常用于IaaS和Paas等云计算服务。嵌入式系统的范围从非常基本到高级处理器,并且通常是根据其价格而不是性能功能来选择的。一个计算机盒包围了大多数台式计算机的组件,为内部零件提供机械支持和保护。它还有助于控制电磁干扰并防止静电放电。使用的案例类型取决于计算机的预期目的,其中一些提供了更多的扩展室或对便携性的影响保护。符合ATX标准,将AC功率转换为120至277伏在较低电压(例如12、5或3.3伏)的DC功率。计算机主板是主要组件,具有通过端口和扩展插槽连接CPU,RAM,磁盘驱动器和外围设备的集成电路的板。关键组件包括至少一个CPU,该CPU执行启用计算机功能的计算,解释RAM中的程序说明并将结果发送回相关组件。CPU通常通过散热器和风扇或冷却系统冷却。许多较新的CPU具有播放GPU和1 GHz和5 GHz之间的时钟速度。有一种增加核心增加并行性的趋势。内部总线将CPU连接到主内存,通过几行同时通信。带有多个处理器的计算机需要由Northbridge管理的互连总线,而Southbridge则管理较慢的外围设备。RAM商店基于用法积极访问层次结构中的代码和数据,其寄存器最接近CPU,其容量有限。多个缓存区域的容量比寄存器更大,但小于主内存,通过预摘要减少延迟。如果需要缓存数据,则可以从主内存中访问。缓存通常是SRAM,而主内存通常是大量的。如果计算机关闭,其永久存储或非易失性存储器通常以比常规内存更低的成本提供更高的容量,但是由于硬盘驱动器中的历史用途,这些内存需要更长的时间才能访问,而硬盘驱动器的历史用途则由更快的固态驱动器(SSD)代替。存储数据的其他选项包括USB驱动器和云存储。ROM(仅读取内存)包含计算机上电动机时运行的BIOS,而新的主板则使用统一的可扩展固件接口(UEFI)而不是BIOS。功率MOSFET控制电压调节器模块(VRM),而CMOS电池为BIOS芯片中日期和时间的CMOS存储器提供动力。可以通过扩展卡通过扩展插槽添加到计算机中,以增强功能,尽管现代计算机通常具有集成的GPU。大多数计算机还具有外部数据总线(例如USB)来连接外围设备,例如键盘,鼠标,显示器,打印机和网络接口控制器。2023年的计算机硬件的全球收入达到7051.7亿美元。电子废物管理至关重要,这是由于计算机硬件中存在的危险材料。处置未经授权的计算机是非法的,并且必须通过政府批准的设施进行回收。可以通过删除可重复使用的零件(例如RAM,图形卡和硬盘驱动器)来简化回收计算机。可以回收许多计算机硬件中使用的有价值的材料,以重复使用,降低成本和环境危害。有毒物质(例如铅,汞和镉)通常在计算机组件中发现,构成健康风险,包括智力发育,癌症和器官损害受损。电子废物的不当处理可能会导致严重的环境污染和健康问题。相比之下,回收计算机硬件被认为是环保的,因为它可以防止危险废物进入大气。存在严格的立法,以执行可持续的处置惯例,包括《欧盟和美国国家计算机回收法》的废物电气和电子设备指令。电子循环是指收集,修复,拆卸,经纪和回收电子设备的过程。像戴尔(Dell)和苹果公司(Apple)这样的公司参加了电子环保计划,以回收各种电子产品,减少电子废物并促进更可持续的未来。在捐赠或回收计算机时,请考虑对教育机构,医院和其他非营利组织进行翻新和重复使用旧计算机的组织。例如,计算机援助国际接受各种捐款,以重新利用这些目的的旧计算机。Kevin(2022)在他的书《探索计算机硬件:理解计算机硬件,组件,外围设备和网络的插图指南》中讨论了计算机硬件的主题。本书涵盖了计算机硬件及其组件的各个方面,包括网络。计算机硬件是众多资源的主题,包括教科书,例如Wang,Shuangbao Paul的计算机架构和组织。这些材料可通过Wikimedia Commons,Wikibooks和Wikiversity等各种在线平台访问。此外,可以在Wikipedia的页面上找到有关计算机硬件的信息。