用于分解,搜索和仿真等任务的量子算法取决于控制流,例如分支和迭代,取决于叠加中数据的价值。用于控制流的高级编程抽象,例如开关,循环,高阶功能和连续性,在古典语言中无处不在。相比之下,许多量子语言不提供叠加中控制流的高级抽象,而需要使用硬件级逻辑门来实现此类控制流。此差距的原因是,尽管经典计算机使用可以取决于数据的程序计数器支持控制流摘要,但量子计算机的典型体系结构并不能类似地提供可以取决于叠加数据的程序计数器。结果,尚未在量子计算机上正确实现的完整控制流抽象集。在这项工作中,我们提供了控制流摘要的属性的完整表征,这些属性在量子计算机上正确实现。首先,我们证明,即使在量子计数器中存在的量子计算机上,也无法通过将经典的条件跳跃指令提升到叠加工作中的量子算法中的控制流。该定理否认能够直接提起控制流的一般抽象,例如𝜆钙从经典到量子编程。为了响应,我们提供了在量子计算机上正确实现的控制流的必要条件。我们介绍了量子控制机,这是一种指令集体系结构,其有条件跳跃的限制是满足这些条件的。我们展示了该设计如何使开发人员使用程序计数器代替逻辑门正确表达量子算法中的控制流。
疫苗接种提供者可以选择使其位置在疫苗接种机上可见,从而使公众更容易找到具有Covid-19疫苗的提供者位置。CDC将指示公众使用疫苗接种剂找到提供Covid-19疫苗的位置。提供者需要知道的是COVID-19-19疫苗接种计划提供者协议要求提供者按照CDC指示报告疫苗供应信息。接收COVID-19疫苗的组织或提供者的位置应使用在线Covid定位卫生提供商门户网站每天向疫苗提示提供供应信息。疫苗接种提供者可以通过安全的Covid定位提供者门户手动报告;或通过自动化的安全数据传输直接传输到COVID定位健康平台。当Covid-19-19疫苗供应有限时,报告的数据仅用于疫苗库存信息,而不是作为帮助公众发现疫苗的资源。当疫苗更广泛地可用时,将通知提供商疫苗接种的公共网站将被打开以显示COVID-19-19-tace疫苗接种地点。这将使公众能够知道他们可以去哪里接受COVID-19疫苗接种。提供商将能够选择是否在网站上显示其位置。对于参与的提供商,疫苗FaccineFinder网站将显示提供商的位置和联系信息,并将表明提供商有可用的疫苗。特定的库存信息将无法向公众提供。
脑机接口 (BCI) 利用用户的大脑活动来控制外部设备,而无需实际运动(Wolpaw 等人,2002 年;Belkacem 等人,2020 年)。这种大脑活动可以使用脑电图 (EEG)、皮层电图、立体脑电图、功能性近红外光谱 (fNIRS) 或功能性磁共振成像 (fMRI) 记录,其中 EEG 使用最多(Orban 等人,2022 年;Islam 和 Rastegarnia,2023 年)。最近,使用 EEG 的 BCI 已成为中风后 UE 运动康复的有前途的技术(Mane 等人,2022 年)。在这种情况下,BCI 在用户和外部设备之间建立了一个闭环系统。通过响应与运动相关的神经活动提供有意义的实时反馈来促进 BCI 和用户之间的这种交互。用户自己执行运动执行、运动尝试或运动想象 (MI),其中 MI 是运动的心理排练。重要的是,所有三种策略都伴随着事件相关的去同步 (ERD) 和同步 (ERS),这反映了振荡功率的降低和增加 (Pfurtscheller 和 Lopes da Silva,1999 年;Pfurtscheller 等人,2006 年;Miller 等人,2010 年)。可以使用不同的外部设备(例如,机器人、手臂矫形器、视觉反馈、功能性电刺激 (FES))向用户提供反馈,其中提供本体感受反馈的设备可能比仅提供视觉反馈更有效 (Ono 等人,2014 年;Bai 等人,2020 年)。具体而言,触发 FES 的 BCI(BCI-FES)被认为是最有效的 (Bai 等人,2020 年)。荟萃分析表明,用于 UE 运动康复的 BCI 可以改善 UE 运动功能(Bai 等人,2020 年;Kruse 等人,2020 年)。然而,人们对下肢 (LE) 运动康复的了解较少。最近基于运动相关皮质电位(Mrachacz-Kersting 等人,2016 年)、BCI-FES(Chung 等人,2020 年;Sebastián-Romagosa 等人,2023 年)和功能性近红外光谱介导的神经反馈(Mihara 等人,2021 年)的 BCI 研究显示步态表现有所改善。Sebastián-Romagosa 等人(2023 年)显示在 25 个疗程中步行速度提高了 0.19 米/秒。然而,迄今为止尚未研究多种 BCI 治疗对中风患者功能状态的影响。
摘要:脑机接口 (BCI) 依赖于电极和神经元之间的接口来发挥作用。大脑中对电极的反应产生的异物反应 (FBR) 会改变该接口,并可能污染检测到的信号,最终阻碍 BCI 功能。FBR 的大小受本综述探讨的几个关键因素的影响;即 (a) 测试动物的大小、(b) BCI 的解剖位置、(c) 电极的形态和涂层、(d) 电极插入的力学原理和 (e) 药理学修饰(例如药物洗脱电极)。试验降低体内 FBR 的方法(特别是在大型模型中)对于进一步应用于人类非常重要,我们系统地回顾了这方面的文献。我们搜索了 OVID、MEDLINE、EMBASE、SCOPUS 和 Scholar 数据库。对汇总结果进行了定性分析。在 8388 篇论文中,有 13 篇被纳入分析,其中大多数排除的研究都是在小鼠模型上进行的实验。实验对象包括猫、兔子和各种品种的小型猪/狨猴。平均而言,在干预组中,死后组织学中 FBR 的炎症细胞减少了 30% 以上。与啮齿动物模型中使用的策略类似的策略,包括尖端修改和柔性正弦电极配置,都在组织学中产生了良好的效果;然而,值得注意的是,缺乏研究对 BCI 终末功能的影响的试验。未来的研究应评估 FBR 的减少是否与预期 BCI 功能效果的改善相关。
1)随着分布式光伏统筹上网电价逐年下降以及储能系统成本降低,建设分布式+储能系统实现 分布式电源全部就地消纳具有较好的经济效益,同时利用储能系统每天“两充两放”的特性, 合理利用阶梯电价,提高系统效益。With the distributed PV grid prices and the energy storage system cost decreasing every year, there is good economic benefit to build the distributed + energy storage system to achieve all the local power consumption, and because the energy storage system charges and discharges twice every day, the step tariff , if well employed, can increase the system benefit. 2)通过能量管理系统控制分布式电源+储能系统平滑输出,减小外部气象条件对分布式电源输 出的影响,提高供电电能质量。Achieving smooth output from the distributed power supply + energy storage system by the energy management system, reducing the impact to the distributed power output from the external weather conditions and improving the quality of power supply. 3)通过分布式电源+储能系统组成并网型微电网系统,当电网故障时,自动切换至独立运行模 式,保持重要负荷连续供电/或者利用储能系统代替企业原有设计起到后备电源(UPS)的作 用。When the grid breaks down, the microgrid system that is composed of the distributed power supply + energy storage system automatically switches to stand-alone mode, which maintains continuous power supply or uses energy storage system to replace the UPS in the original design.
Fig.1 RICE 原则定义了一个对齐系统应具备的四个关键特性,这四个特性并无特定顺序: (1) 鲁棒性 (Robustness) 指人工智能系统的稳定性需要在各种环境中得到保证; (2) 可解释性 (Interpretability) 指人工 智能系统的操作和决策过程应该清晰易懂; (3) 可控性 (Controllability) 指人工智能系统应该在人类的指导 和控制下运行; (4) 道德性 (Ethicality) 指出人工智能系统应该遵守社会规范和普适价值观。这四个原则指 导人工智能系统与人类意图和价值观的对齐。他们本身并不是最终目标,而是服务于对齐的中间目标。
图 2-15 感知机 ............................................................................................................................. 18
智能触摸控制器还提供有关电力比例分配的信息,使管理电力消耗更加容易。可选软件用于计算电力比例分配,可将连接到智能触摸控制器的每个室内机(或组)每小时的电力消耗数据(CSV 格式)保存在专用存储卡上(可存储 13 个月的数据)。然后可以在 PC 或电子表格程序上显示。然后可以根据相应的条件使用不同的会计方法计算消耗率。计算完成后,可以打印账单。
智能触摸控制器还提供有关电力比例分配的信息,使管理电力消耗更加容易。可选软件用于计算电力比例分配,可将连接到智能触摸控制器的每个室内机(或组)每小时的电力消耗数据(CSV 格式)保存在专用存储卡上(可存储 13 个月的数据)。然后可以在 PC 或电子表格程序上显示。然后可以根据相应的条件使用不同的会计方法计算消耗率。计算完成后,可以打印账单。