抽象的现代系统使用受害者刷新来减轻Rowhammer,当侵略者行遇到指定数量的激活时,它会刷新侵略者行的邻居。不幸的是,复杂的攻击模式,例如半双打破受害者 - 消除受害者,使当前系统易受伤害。取而代之的是,最近提出的安全的Rowhammer缓解作用对侵略者而不是受害者采取缓解行动。此类计划采用缓和措施,例如行迁移或访问控制,包括Aqua,SRS和Blockhammer。尽管这些方案仅在几千的Rowhammer阈值下产生适度的放缓,但对于可能在不久的将来可能的较低阈值而言,它们会产生过慢的慢速(15%-600%)。我们论文的目的是在如此低的阈值下实用安全的锤子缓解。我们的论文提供了关键的见解,即由于内存映射而良性应用遇到数千个热行(收到比阈值更多的接收动机),这使得在同一行中将空间近距离线放置在同一行中,以最大程度地提高行 - 掩盖式hitrate。不幸的是,这会导致行接收许多常用线路的激活。我们提出了Rubix,它通过使用加密的地址访问内存,从而打破了线到行映射中的空间相关性,从而将热行的可能性降低了2至3个数量级。有助于行列击球,rubix随机 - 一组1-4行。我们还提出了Rubix-D,该rubix-d会动态更改行对行映射。rubix-d min-模仿热行,使对手更难学习一排的空间邻居。rubix将Aqua的放缓(从15%)降低到1%,SRS(从60%到2%)和重锤(从600%到3%),同时产生小于1千键的存储。
我们的主要结果是从最坏的晶格问题(例如G AP SVP和SIVP)降低到某个学习问题。这个学习问题是“从奇偶校验和误差问题学习到更高模量的自然扩展。也可以将其视为从随机线性代码解码的问题。这很大程度上表明这些问题很困难。但是,我们的还原是量子。因此,对学习问题的有效解决方案意味着G AP SVP和SIVP的量子算法。一个主要的开放问题是,是否可以使这种减少的经典(即非量化)。我们还提出了一个(经典的)公钥密码系统,其安全性是基于学习问题的硬度。从主要结果来看,其安全性也基于G AP SVP和SIVP的最差量子量子硬度。新的加密系统比以前基于晶格的Cryposystems:公共密钥的大小〜O(n 2)和加密消息的大小增加了〜O(n)的倍数(在先前的密码系统中,这些值分别为〜O(n 4)和〜o(N 2))。实际上,在所有各方共享一个随机长度〜o(n 2)的假设下,公共密钥的大小可以降低到〜o(n)。
摘要 — — 电池储能系统 (BESS) 已被研究用于处理电力系统 (如负载和可再生能源) 的不确定参数。然而,在电网不平衡运行下,BESS 尚未得到适当的研究。本文旨在研究电网不平衡不确定条件下 BESS 的建模和运行。所提出的模型管理 BESS 以优化能源成本,处理负载不确定性,同时解决不平衡负载。对三相不平衡不确定负载进行建模,并利用 BESS 在每相上产生单独的充电/放电模式以消除不平衡情况。以 IEEE 69 节点电网为例进行研究。负载不确定性由高斯概率函数开发,并采用随机规划来处理不确定性。该模型被制定为混合整数线性规划,并通过 GAMS/CPLEX 进行求解。结果表明,该模型能够同时处理不平衡不确定条件,最小化运行成本,并满足电网各项安全约束。
系统接线图(如上所示)是线束设计的起点,因为它包含信号路径和至少一些有关电气连接飞机组件所需的电线类型(如线规)的信息。在更先进的工程系统中,接线图中的接线数据链接到数据库。然后,可以将此数据库与其他数据(如线束设计软件包中的 3D 机身模型)合并。然后,线束设计人员将这些数据与机械/结构工程师协商,以确定机身内可接受的布线路径。确定这些路径后,就可以“布线”系统接线图中的电线并确定线束几何形状。由于系统组件遍布整个飞机,因此机身线束几乎总是包含来自多个系统的电线。
系统接线图(如上所示)是线束设计的起点,因为它包含信号路径和至少一些有关电气连接飞机组件所需的电线类型(如线规)的信息。在更先进的工程系统中,接线图中的接线数据链接到数据库。然后,可以将此数据库与其他数据(如线束设计软件包中的 3D 机身模型)合并。然后,线束设计人员将这些数据与机械/结构工程师协商,以确定机身内可接受的布线路径。确定这些路径后,就可以“布线”系统接线图中的电线并确定线束几何形状。由于系统组件遍布整个飞机,因此机身线束几乎总是包含来自多个系统的电线。
