省级机构的主要职能(在这种情况下实际上是分支机构)是根据年度工程计划实际在高速公路和道路上实施工程。所有在主要道路上的工作都是通过合同执行的,并由顾问以及省级机构的人员进行监督。省级机构的另一个职能是报告工程的物理和财务进步。随后,省级机构编制的这些报告将通过区域办公室每月发送到主要的道琼斯工业总部。此加上上面的段落描绘了区域办公室和典型地区/省级设置的省级办公室,因为此安排适用于向各自地区办事处报告的所有省份。
属于伊蚊属的毒性昆虫是病毒和丝状病原体的载体。Ades bopotus是一个越来越重要的向量,因为它在全球范围内的迅速扩展。在全球气候变化和人畜共患疾病的出现的背景下,需要使用现场应用的识别工具来加强对具有医疗兴趣的节肢动物的昆虫学调查的努力。大规模的蚊子对蚊子的主动调查需要熟练的技术人员和/或昂贵的技术设备,这使大量命名物种更加困惑。在这项研究中,我们通过利用机翼干涉模式显示的特定物种标记来开发出一种伊蚊物种的自动分类系统。保留494个24 Aedes spp的显微照片的数据库。记录了十多张图片的人经历了一种深入的学习方法,以训练卷积神经网络并测试其在属,亚属和物种分类学水平上对样本进行分类的准确性。我们在属水平上记录了95%的准确性,在三个测试的亚属中,两种(ochlerotatus and stegomyia)的准确性> 85%。最后,将8个精确地分类为10个Aedes sp。经历了总体准确性> 70%的培训过程。总的来说,这些结果证明了这种方法对艾德斯物种识别的潜力,并将代表未来实施大规模昆虫学调查的工具。
用于解决复杂物理问题的机器学习(ML)技术的整合越来越被认为是加快模拟的有前途的途径。但是,评估ML衍生的物理模型在工业环境中的采用构成了重大挑战。本竞赛旨在促进创新的ML方法来应对身体挑战,利用我们最近引入的统一评估框架,称为学习工业物理模拟(LIPS)。建立在2023年11月至2024年3月1日举行的初步版本上,该迭代以良好的物理应用为基础的任务为基础:使用我们建议的Airfrans数据集,翼型设计模拟。竞争基于各种标准评估解决方案,包括ML准确性,计算效率,分布外部性能和遵守物理原理。值得注意的是,这项竞争代表了探索ML驱动的替代方法的开创性努力,旨在优化物理模拟中计算效率和辅助性之间的权衡。托管在Codabench平台上,比赛为所有参与解决方案提供了在线培训和评估。
b' CAP G1000 IP 认可培训是否要求豁免地面和/或飞行培训以进行 CAP 过渡/认可?如果是,请在下面的豁免部分详细说明所有豁免必须得到机翼标准化/评估官 (DOV) 的批准'
已经创建了溢出机学习机翼性能(PALMO)数据库,以实现各种应用程序中的机翼性能的强大建模。数据库使用溢出仿真数据二阶精确,并在Spalart-Allmaras湍流闭合时在空间上精确精确。开发棕榈数据库的基础是翼型基座立方体。每个基本立方体都包含在一系列的MACH数字,雷诺数和攻击角度的范围内参数化的模拟数据。数据库的第一个版本包括NACA 4系机翼,在机翼厚度中具有参数化,从NACA 0006到NACA 4424。总共在NASA高端计算能力(HECC)超级计算机上运行了52,480个NACA 4系列计算,并且将相应的机翼性能系数嵌入本文档的附录中,以进行公共分布。这提供了涵盖广泛的航空航天设计应用程序的高级精确模拟数据,该应用使用户能够开发溢出质量的机翼性能查找表,而无需其他高性能计算。除了对航空航天车的工程设计和分析外,Palmo非常适合作为航空航天工程中机器学习方法开发和测试的基准数据集。下游替代模型可实现溢出质量的机翼性能预测,以预测数据库范围内的室内,厚度,马赫数,雷诺数和攻击角度的任何任意组合。
1956 年 9 月 15 日,第 501 战术导弹联队 1944 年 6 月 1 日,第 501 轰炸机大队成立,并于 1945 年 4 月部署到关岛,在那里执行了 15 次作战任务,并向盟军战俘空投了食物和补给。 1956 年 9 月 15 日,第 501 战术导弹联队成立,成为美国空军第一个战术导弹联队,1958 年 6 月 18 日解散。1982 年 7 月 1 日,该联队重新启用,更名为第 501 战术导弹联队,但于 1991 年 5 月 31 日解散。后来,该联队被指定为第 501 战斗支援联队,并于 2005 年 3 月 22 日重新启用。第 501 战斗支援联队仍然是美国空军唯一的战斗支援联队,它通过遍布英国、挪威和塞浦路斯的十个地理位置分散的基地,延续了其在全球范围内执行战斗任务和开展外交活动的悠久传统。
这项工作调查了较高纵横比翼的潜力,以提高远程飞机的燃料效率。高纵横比机翼的主要特征是讨论的,并提出了航空结构机翼优化的过程。基于尾边控制表面偏转的自适应机翼技术,以实现最佳的升力分布,从而最大程度地减少巡航战斗中的阻力并最大程度地减少操纵流的负载减少,并由高级结构技术通过增加的应变易于应变和后式结构技术来补充。在优化过程中,使用高实现模拟方法来确定跨性别巡航流中的权限,机翼上的机翼上的载荷和复合机翼盒的质量。在所有流动条件下都考虑了静态气动弹性效应。最小化三个典型战斗任务的燃油消耗代表了目标函数。考虑控制表面和飞机装饰的几何整合。该过程的应用以优化机翼平面形,扭曲分布和控制表面变化构成了本出版物的主要部分。结果显示了12个顺序的最佳机翼纵横比。将纵横比的进一步增加到13。5显示空气动力学性能和由此产生的燃料消耗没有进一步改善。
摘要 - 机翼是飞机期间为飞机产生必要升降机的飞机的结构组件。当流动通过机翼时,压力差会在上部和下表面上发生,这是产生升力的原因。皮瓣会在起飞和着陆期间影响飞机的性能。这项研究旨在使用Al -2024,碳纤维(Hexcel AS4C)和石墨烯在襟翼上分析飞机机翼,而无需更改机翼的性质。由于碳纤维是一种轻巧的材料,石墨烯是一种自我修复材料,因此可以在襟翼中互相代替,并且可以确定结构特性以确定哪种材料是最好的。在这项研究工作中,使用先前的结果进行验证;进行了参考模型的结构分析,并将其与参考文件中的数据进行了比较,以验证研究工作。在CATIA V5中对带有两个翼梁和5个肋骨的机翼进行了建模,CATIA V5使用HyperMesh OptiStruct在数值和结构上进行了分析。对建模的机翼进行了数值分析,以了解作用在机翼和襟翼上的压力。将这种压力作为静态分析中的载荷给出,并且皮瓣的材料特性变化,使机翼常数的材料特性保持。与其他两种材料相比,石墨烯材料的位移和应变较小。因此,与其他两种材料相比,石墨烯可用于襟翼。