摘要:拓扑优化已成为轻量化和性能设计的有效工具,尤其是在航空航天工业中。事实证明,它能够满足生产更坚固、更轻便的复杂零件的要求。该技术已证明具有成本效益、提高了有效载荷能力并提高了航空航天领域的燃油经济性,并使结构部件能够在使用更少材料的情况下提供相同或增强的性能。在飞机中,机身和机翼是重要的结构部件。机翼机身耳状连接支架是连接机翼和机身的连接元件。支架的灾难性故障有时会导致飞机结构分离。这项工作专注于飞机机翼机身耳状连接支架的建模、形状优化和分析。该方法涉及使用不同材料组对支架进行建模和形状优化。进行了有限元建模和结构分析,以研究支架上的应力和变形。进行疲劳损伤评估以研究支架在重复循环载荷下的行为。关键词:- 拓扑优化、机翼机身连接支架、疲劳损伤、静态结构、载荷系数、质量减轻。
执行总结在过去20年中,民用空气巡逻队在紧急服务,航空航天教育和Cadet计划区域内的任务活动迅速扩大和发展。这一进展的一些例子包括增加参与国土安全任务;在墨西哥,波多黎各和巴哈马的灾难中扩展了水上任务;引入无人飞机系统以进行紧急服务和航空航天教育活动;通过机翼计划,Cadet初级飞行训练;并认可空军部门作为全部队的成员。但是,CAP操作的规模,范围和复杂性的增加为组织及其成员带来了传统和新兴危害的额外风险。对操作环境的自然和人类引起的变化也引起了必须积极管理的风险,例如与全球变暖,病毒大流行病相关的极端天气事件以及在公共场合中增加的大规模暴力行为。确保CAP成员的身体以及心理,健康和安全,保护CAP资产以及在整个组织中保持弹性必须是当前组织环境中的优先事项。但是,不再应仅将健康和安全委托给分配给这些角色的民事空气巡逻队成员,并通过积极的基于系统的方法来解决,而不是组织各个级别的个人的反应性努力。执行该战略计划将使FLWG能够有效地解决其运营和活动中的风险,同时通过CAPR 160-1内空气巡逻安全计划中讨论的安全管理系统(SMS)概念提高整体弹性。
桥梁的抖振、颤振和倒塌、高层建筑和风力涡轮机叶片的流体激励振动以及飞机机翼的颤振等现象。FSI 分析对于各种飞机部件(尤其是机翼)的高效轻量化结构非常重要。在这个项目中,我们设计了一个缩小的矩形平面机翼模型,并希望对机翼进行静态分析,以确定作用于机翼的空气动力、应力和各种模式的频率。随后,我们在耦合模式下进行了分析,并将其与之前获得的结果进行了比较,以观察流动模式以及当机翼被视为柔性时结构的行为方式。关键词:流体结构相互作用、CFD、耦合、机翼、柔性。1.引言 流体结构相互作用是流体动力学和结构力学定律之间的多物理场耦合。FSI 现象的特点是可变形或移动的物体与周围流体之间的相互作用。这些相互作用可以是稳定形式,也可以是振荡形式。当结构存在于流体流动中时,流体流动会对固体施加应力和应变,这些力会导致结构变形。产生的变形可能大或小,具体取决于流动的特性,例如压力和速度。流体引起的固体结构变形反过来又会影响流体的流动和压力场,变形会导致流动特性的变化,因此流体结构相互作用是流体动力学和结构力学之间的耦合。
流体结构相互作用非常重要,在设计飞机、航天器、发动机和桥梁等许多工程系统时必须考虑这一因素。在由易疲劳材料组成的结构中,这些振荡相互作用可能非常严重。疲劳可以描述为一种循环载荷,它会导致材料产生循环应力和应变,在这种循环载荷的作用下,材料在临界阶段会失效。飞行过程中,飞机机翼会受到各种与时间相关的载荷,导致机翼变形和振动,这对结构设计和安全性是一个挑战,作用在机翼上的载荷会导致高应力集中区域形成裂纹,裂纹会不断扩展,直到达到最大值,之后飞机机翼结构将因疲劳而失效。因此,飞机机翼是一种极易疲劳的结构,因此考虑飞机机翼结构的 FSI 非常重要。由于飞机出现颤振、抖振等各种不良现象,流体与柔性机翼之间的相互作用极为重要。
先进的大翼展飞机具有更大的结构灵活性,但可能出现不稳定或操纵性差。这些缺点需要稳定性增强系统,该系统需要主动结构控制。因此,飞行中机翼形状的估计有利于控制非常灵活的飞机。本文提出了一种基于扩展卡尔曼滤波估计柔性结构状态的新方法,该方法利用了辅助惯性导航系统中采用的思想。将不同机翼位置的高带宽率陀螺仪角速度集成在一起,以提供短期独立惯性形状估计解决方案,然后使用额外的低带宽辅助传感器来限制发散估计误差。所提出的滤波器实现不需要飞机的飞行动力学模型,简化了通常繁琐的卡尔曼滤波调整过程,并允许在机翼偏转较大和非线性的情况下进行准确估计。为了说明该方法,通过使用瞄准装置作为辅助传感器的模拟来验证该技术,并进行可观测性研究。与文献中基于立体视觉的先前研究相比,我们发现了一种传感器配置,仅使用一个摄像头和多个速率陀螺仪分别用于卡尔曼滤波更新和预测阶段,即可提供完全可观察的状态估计。
摘要 本研究调查了位于螺旋桨尾流中的基于叶片的推力矢量系统的效率,该系统可在净推力损失最小的情况下支持前向力。矢量系统本身既可放置在独立螺旋桨配置中,也可放置在机翼螺旋桨配置中。在代顿大学低速风洞 (UD-LSWT) 使用现成的 R/C 螺旋桨进行静态和基于风力的实验。敏感性分析确定了叶片偏转角对推力矢量的影响以及螺旋桨相对于集成机翼上表面的位置对系统性能的影响。静态测试结果表明,当矢量设计放置在机翼中时,叶片性能显著改善。在两种螺旋桨俯仰情况下:75° 和 90°,随着叶片偏转角的逐渐增加,实现了推力矢量,随之改变了俯仰力矩。标准 90° 螺距方向的一体式机翼螺旋桨系统风洞试验结果显示,在低于 0.3 的前进比下成功实现推力矢量控制,这对于大多数相关应用而言是实用的;螺旋桨叶片系统的 75° 螺距方向观察到推力矢量控制能力扩展到 0.7 的前进比。敏感性分析表明,暴露在流动自由流中的螺旋桨的整体效率高于完全嵌入模拟机翼的螺旋桨,尽管嵌入式壳体具有更好的推力矢量控制能力。致谢 诚挚感谢亨利·卢斯基金会通过克莱尔·布思·卢斯 (CBL) 研究项目提供的支持。另一位主要捐助者蔡杰龙先生(Jacky)对本工作期间的持续指导深表感谢。
本文介绍了欧盟资助的研究项目 AGILE(2015 – 2018)中针对整体飞机设计的多学科设计和优化 (MDO) 领域的研究活动中所进行的方法研究。在 AGILE 项目中,来自欧洲、加拿大和俄罗斯的 19 个工业、研究和学术合作伙伴组成的团队正在共同开发下一代 MDO 环境,旨在大幅降低飞机开发成本和上市时间,从而生产出更便宜、更环保的飞机。本文介绍了 AGILE 项目结构,并描述了第一年取得的成果,这些成果催生了参考分布式 MDO 系统。然后,重点介绍了第二年研究的各种新型优化技术,所有这些技术都旨在简化复杂工作流程的优化,这些工作流程的特点是学科相互依赖性高,设计变量多,涉及多层次流程和多合作伙伴协作工程项目。本文针对传统飞机引入并验证了三种优化策略。首先,在机翼设计问题上使用基于纳什博弈和遗传算法的多目标技术。然后对发动机舱设计进行深入研究,使用基于代理的优化器来解决单目标问题。最后采用稳健方法来研究参数不确定性对发动机舱设计过程的影响。这些新功能
摘要。本文介绍了 MH114 高升力翼型的多目标优化。我们寻求一组帕累托最优解,使翼型升力最大化,阻力最小化。由于几何不确定性,升力和阻力被认为是不确定的。概率气动力值的不确定性量化需要大量样本。然而,由于 Navier-Stokes 方程的数值解,气动力的预测成本很高。因此,采用多保真替代辅助方法将昂贵的 RANS 模拟与廉价的潜在流计算相结合。基于多保真替代的方法使我们能够在不确定的情况下经济地优化翼型的气动设计。
翼梁,肋骨和字符串也是由支柱支撑的版本。的差异在于一个事实,即通过张力吸收一部分载荷(如果存在高翼的配置,如图2所示)或压缩(如果是低翼构造)。这意味着机翼的结构可以更轻,甚至可能在相同数量的质量方面更大[1]。这意味着在结构上更轻,更长,更薄的翅膀具有较高的细长度,从而提高了空气动力学效率或L/D比。此外,提高的效率将意味着飞机还需要减少燃料,从而减轻重量。,尽管这种配置也有一些缺点,因为支撑杆本身也增加了飞机的质量,并增加了飞机湿润的表面,从而增加了其寄生虫的阻力。也必须注意干扰和添加的结构复杂性,并且这种配置可能导致的空气弹性问题[2]。对于短途飞机来说,这种设计特别有趣,其中更具空气动力的机翼可以提供更高的攀爬速度和更滑的CD(连续下降)。
该项目探索了全碳纤维增强聚合物无人机 (UAV) 的商用飞机的经典机翼结构。它是多个研究飞机不同部件的小组合作工作的一部分。本报告的目的是介绍更环保、更高效的 2:1 版 Skywalker X8 内翼结构的设计。为了使飞机尽可能高效,结构需要轻量化。首先使用 XFLR5 近似计算负载,并进行初步设计。然后使用 Ansys Static Structural 程序中的有限元分析 (FEA) 对该设计进行测试。测试的材料是碳纤维/环氧预浸料。机翼的最终设计重 3.815 公斤,由一根翼梁和 1 毫米厚的蒙皮组成。整机重量(包括其他研究小组研制的推进系统和翼尖鲨鳍小翼)为20.262千克,升阻比也经过计算,得出最有效的迎角在2-3°左右。
