第 10 章 – 增强型机翼拆卸支持 F-16 10-1 结构寿命管理 1 10.1 简介 10-1 10.2 爱尔兰皇家空军 F-16 机队的结构寿命管理 10-1 10.2.1 历史 10-1 10.2.2 SLM 框架 10-1 10.2.3 国内 SLM 活动示例 10-2 10.2.3.1 单独飞机跟踪 10-2 10.2.3.2 NDI 技术评估 10-4 10.2.3.3 事故调查 10-5 10.2.3.4 新紧固件系统评估 10-6 10.2.3.5 拆卸检查 10-8 10.3 增强型 F-16 15 段机翼拆卸 10-9 10.3.1 F-16 Block 15 机翼拆卸检查 @ 4,200 FH 10-10 10.3.2 F-16 Block 15 机翼损伤增强试验及后续拆卸 10-13 10.3.2.1 载荷引入 10-14 10.3.2.2 试验设置 10-14 10.3.2.4 标记载荷 10-18 10.3.2.5 试验活动 10-19 10.3.2.6 试验期间的明显疲劳裂纹 10-20 10.3.2.7 WDET 后拆卸检查 10-21 10.3.2.8 定量断口分析 10-22 10.3.2.9 RNLAF F-16 Block 15 机翼的经济使用寿命 10-26 10.4 结论 10-27 10.5 展望 10-28 10.6 参考文献 10-29
人们会考虑在不首先测量其稳定性、升力和阻力特性的情况下进行先进设计。风洞的实用性是显而易见的,但它并不是第一个空气动力学测试设备。测量阻力和航空理论各个方面的探索始于航空业的首次进步,即引入旋转臂。旋转臂装置(4 英尺长)是由才华横溢的英国数学家本杰明罗宾斯 (1707-1751) 开发的。它由作用在滑轮和主轴装置上的下落重物旋转,臂尖的速度仅为每秒几英尺(最高速度为 3 至 6 米/秒)。大量的湍流给实验者带来了严重的问题,例如确定模型和空气之间的真实相对速度。此外,当模型高速旋转时,很难安装仪器并测量施加在模型上的微小力。英国航空学会理事会成员 Francis Herbert Wenham (1824–1908) 于 1871 年发明、设计和运行了第一个封闭式风洞,解决了这个问题。经过一些实验研究,发现升阻比非常高,因为这种机翼可以支撑相当大的负载,使动力飞行似乎比以前想象的更容易实现。进一步的研究工作揭示了现在称为纵横比的影响:长而窄的机翼(如现代滑翔机上的机翼)比具有相同面积的短机翼提供更大的升力 [1-3]。
美国宇航局艾姆斯研究中心于 20 世纪 90 年代初对超音速商用客运斜全翼概念进行了设计研究。这项研究的参与者包括美国宇航局艾姆斯研究中心在斜翼设计方面拥有长期专业知识的工作人员,以及来自西雅图波音商用飞机公司和加州长滩道格拉斯飞机公司的工程师,以及斯坦福大学的研究团队。行业合作的目的是确保研究中包含现实世界的设计约束,并获得行业设计专业知识。斯坦福大学的团队建造并试飞了一架 17 英尺跨度的斜全翼无人机,展示了 3% 负静态稳定性的飞行。设计研究最终产生了两种机翼设计,称为 OAW-3 和 DAC-1。OAW-3 机翼由 NASA Ames 团队设计,代表了基于配置约束和任务性能指标的高度优化设计。DAC-1 机翼由道格拉斯飞机公司的团队设计。它是一种经典的椭圆形平面形状,具有高度的气动形状优化,但设计并未根据整体任务性能指标进行优化。虽然两个机翼都在 9 x 7 超音速风洞中进行了测试,但只有 OAW-3 机翼拥有完整的控制面和发动机舱。本报告中描述的风洞数据仅在 NASA OAW-3 配置上获得。
此提交内容包括有关重新划分六(6)个土地的请求的详细信息,以促进扩大新的电池厂。拟议工厂最大部分所在的包裹已经用于工业目的,并且不包括在请求中。其他六个包裹有助于使较大的包裹“整体”进行开发,同时还保留了与居民区明显的分离。六个包裹之一是旧的机翼任务。我们打算保留旧的机翼任务大楼。
摘要。本研究研究了各种机器学习(ML)算法在预测两个关键空气动力系数的应用,即最大升力系数(𝐶𝐶)和最小阻力系数(𝐶𝑑),对于任何给定的雷诺数,风力涡轮机翼型。我们建议使用聚类技术对类似的机翼形状进行分组,并使用创建的分区来预测使用它们相似性的看不见的机翼属性。在这里,我们还代表了Parsec低维空间中的机翼,而不是高维翼型点空间,以弥补少量训练数据。为此,创建了一个扩展的实验机翼数据库,并用于基于五种不同ML算法的培训模型。我们观察到决策树集合(DTE),随机森林(RF)和多层感知器(MLP)模型成为𝐶𝐶𝑙和𝐶𝑑𝑑𝑚𝑖𝑛𝑑𝑑𝑑𝑑𝑑𝑚𝑖𝑛𝑑𝑚𝑎𝑥𝑚𝑖𝑛𝑙的最有效预测指标。在培训数据库中未包含的三个其他机翼案例上测试这两个ML模型表明,𝐶𝐶𝑙𝑙𝑙𝑙𝑙预测性能通常是合理的,错误级别的平均值约为5%。相比之下,𝐶𝑑的预测误差水平通常更高,平均约为15%。
1 概述 本飞行员操作手册 (POH) 包含多个章节,以符合通用航空制造商协会 (GAMA) 手册规范。GAMA 格式已被采用,并在适当情况下用于此重量转移控制超轻型飞机。第 2、3、4、5 和 9 节已获得民航安全局批准,并构成飞机的核准飞行手册。飞行手册包含 XT 912 底座与 Streak 3 机翼或 Cruze 机翼相结合的信息。所有相关信息均针对任一配置提供。操作员必须确保针对特定机翼底座组合引用正确的数据。 1.1 简介 此超轻型飞机系列是根据澳大利亚民航安全局对重量转移控制飞机的要求设计和制造的,符合 BCAR 第 S 节的设计标准,可认证为主要类别飞机。澳大利亚的运营要求详见民航令 95.32。操作员在初次操作之前必须彻底熟悉飞机和本手册的内容。
Barre R. Seguin经过超过31年的活跃服务,于2020年10月从美国空军退休。他的最后一项任务是担任战略就业副局长,最高总部盟军欧洲欧洲欧洲欧洲。他于1989年从纽约州立大学波茨坦大学毕业后,于1989年担任预备役军官培训团的杰出毕业生。他的飞行任务包括担任飞行审查员,教练飞行员,机翼安全与运营官员,并在中队,团体,机翼以及空中和太空远征工作队级别担任命令。他的指挥和人员职位包括阿富汗喀布尔的第9空中和太空远征队 - 阿富汗和北约空军指挥官 - 阿富汗;德国斯图加特的美国非洲司令部,战略,参与和计划主任;司令,意大利阿维亚诺空军基地第31战斗机翼;总部空战司令部监察长。