系统接线图(如上所示)是线束设计的起点,因为它包含信号路径和至少一些有关电气连接飞机组件所需的电线类型(如线规)的信息。在更先进的工程系统中,接线图中的接线数据链接到数据库。然后,可以将此数据库与其他数据(如线束设计软件包中的 3D 机身模型)合并。然后,线束设计人员将这些数据与机械/结构工程师协商,以确定机身内可接受的布线路径。确定这些路径后,就可以“布线”系统接线图中的电线并确定线束几何形状。由于系统组件遍布整个飞机,因此机身线束几乎总是包含来自多个系统的电线。
Teros 采用 Sonex Aerospace 久经考验的动力滑翔机机身。Sonex 设计提供了极其坚固的飞机,每飞行小时成本非常低,总生命周期成本也非常低。自 2003 年推出以来,机身已记录了数千小时无故障飞行,包括滑翔、越野和特技飞行。这款可靠的无人机现已融入 Teros 的设计中,集成了关键的冗余飞行控制系统和智能电气系统,以防止复杂的故障。令人惊讶的敏捷 Teros 具有坚固的结构和耐用性,同时又不牺牲其轻量化设计。凭借短距离起飞和降落能力、快速现场组装、快速维修和自主飞行操作,Teros 是一个用途广泛且性能强大的空中平台。
1 引言 近年来复合材料被广泛应用于运输飞机的制造。复合材料在商用运输中的首次重大应用是空客 1983 年为 A300/310 飞机采用的全复合材料方向舵。1985 年,空客也在同样的型号中引入了复合材料垂直尾翼。随着 A300/310 的成功,空客为 A320 飞机引入了全复合材料尾翼结构。A320 飞机的复合材料重量占结构重量的 15%。1970 年代末,NASA 和波音、洛克希德、MD 等主要机身公司启动了 ACEE 计划。该计划的主要目标是通过使用复合材料来减轻机身结构重量。在 ACEE 计划中,B737 的尾翼被复合材料取代,MD 为商用运输飞机开发了全复合材料机翼,洛克希德为 L1011 设计了新的复合材料垂直尾翼和副翼。在美国,复合材料在民航客机上应用最为广泛的是B777,复合材料结构占B777结构重量的10%,B777的尾翼、地板梁、襟翼和外副翼均采用复合材料制造。空客和波音最近研制的民航客机的机身和机翼结构也采用了复合材料,A350和B787的复合材料重量比将超过50%,两款飞机的翼盒和机身结构均采用了复合材料。
保证(月)机身,电子,光源:ST -24 AT -36数据,数据2,DALI -60 CB -60电池:ST -12 at -24数据,数据2,DALI -DALI -24
简介....................................................................................................................................................................................................................................................................1 计划事件....................................................................................................................................................................................................................................................................2 背景/历史....................................................................................................................................................................................................................................................................................................4 一般特征....................................................................................................................................................................................................................................................................................4 设计特点....................................................................................................................................................................................................................................................................5 设计特色....................................................................................................................................................................................................................................................................5 .......................................................................................................................................................................................................................6 机身.......................................................................................................................................................................................................................................................................................6 起落架.......................................................................................................................................................................................................................................................................8 推进系统.......................................................................................................................................................................................................................................................................8 有效载荷系统.......................................................................................................................................................................................................................9 有效载荷系统....................................................................................................................................................................................... . . . . . . . . . . . .10 飞行控制系统. . . . . . . . . . . . . . .15 液压系统. . . . . . . . . . . . . . . . .20 电气系统. . . . . . . . . . . . . . . . .21 燃油系统. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
为追求轻量化,机身采用硬壳式结构设计,主翼采用半硬壳式结构。机翼前缘和后缘采用由多条肋条和纵梁组成的骨架结构,机翼表面采用贴有太阳能电池的树脂薄膜。为方便运输,机身可分为两部分,主翼可分为三部分,各连接部分采用插拔式保持结构,既保持了刚度又减轻了重量。从尾翼、发动机舱、起落架等主要部件到机载设备支架等小部件,最大限度地利用了复合材料,实现了轻量化。因此,复合材料结构总重量仅为设计的35公斤。太阳能飞机成功获取了各种数据,并证实了为通信卫星和高空飞机建立通信环境的可能性。主要优势
描述:AV-8B 鹞式飞机是一种单座、单引擎、跨音速喷气式飞机,能够垂直/短距起降 (V/STOL)。这种 V/STOL 能力与高性能和战斗力相结合,为海军陆战队部队提供了快速反应武器系统。主要承包商为波音飞机公司(位于密苏里州圣路易斯)的机身、英国布里斯托尔的劳斯莱斯有限公司(位于英国金斯敦)的发动机和英国宇航公司(位于英国金斯敦)的后机身。美国 AV-8B 飞机新生产的最后一年是 1992 财年。AV-8B 再制造计划将较旧的 AV-8B 日间攻击配置飞机转换为最新生产的雷达/夜间攻击配置。预算请求支持继续进行为期 3 年的多年期机身采购。
为了减少二氧化碳排放,必须考虑一种颠覆性的飞机推进概念。如过去几年所研究的那样,混合分布式电力推进是一种很有前途的选择。在这项工作中,我们研究了使用这项技术的新概念飞机的可行性。我们使用了两种不同的能源:燃料发动机和电池。之所以选择后者,是因为它们在操作过程中具有灵活性,并且在未来几年内有望得到改善。本研究考虑的技术前景是 2035 年:因此我们对电气元件、机身和推进系统做出了一些关键假设。由于这些数据存在不确定性,因此我们进行了敏感性分析,以评估技术变化的影响。为了评估所提出概念的优势,我们将其与基于当今技术(机身、推进系统、空气动力学)发展的传统飞机(EIS 2035)进行了比较。
1971 年之前,西科斯基飞机公司分析直升机结构的主要方法是通常的材料强度方法。进行了半经验校正以解释复杂的切口或应力集中区域。对于一些冗余结构区域,在有限的程度上采用了弹性能量法,但主要用作高应力部件的应力检查。在 20 世纪 60 年代,机身广泛使用应变计(使用了大约一千个应变计)来将应力分析与测试结果关联起来。这项相关性研究表明,如果使用更准确的分析方法来预测内部载荷路径,可以实现显著的重量减轻。因此,使用力法重新分析机身类型结构,并获得了明显改善的相关性。但主要的问题是无法利用这种改进的方法及时进行结构设计。