从冰川高山高精度生成 DGM - 机载激光扫描的潜力 Dominik Lenhart1、Helmut Kager2、Konrad Eder3、Stefan Hinz1、Uwe Stilla3 1 慕尼黑工业大学遥感方法学主席 2 维也纳工业大学摄影测量与遥感研究所³摄影测量与遥感系,慕尼黑工业大学 摘要:机载激光扫描 (ALS) 提供了以高度自动化生成高精度数字地形模型 (DGM) 的可能性。虽然这项技术在农村和城市地区的准确性潜力已经在许多研究和应用中得到证明,但本文分析了这种记录方法在冰川高山中的准确性潜力。结果表明,通过同步条纹调整进行地理配准可以最大限度地减少相邻纵向条纹之间的差异,并将数据添加到几厘米的 GPS 护照信息中。例如,在雪面等光滑区域,内部精度为 5-8 厘米,在较粗糙的岩石区域,内部精度约为 17-30 厘米。除了高精度之外,数据集的点密度还提供了一个有趣的分析方面。例如,冰川舌区域的部分记录失败(由吸收和可能的定向反射引起)——这对于 DGM 来说本质上是负面的——开辟了新的调查可能性,例如当地的 S
前言 机载监视正在迅速发展,许多新功能计划引入驾驶舱。国际民航组织全球空中导航计划(GANP)(Doc 9750)要求这些功能能够互操作,以使飞机在全球范围内达到相同的安全和效率水平。机载监视代表着监视功能从传统的地面传感器向全面的航空电子设备的转变,这将支持一系列新的、要求严格的监视功能和应用。飞机位置和其他机载参数由基本机载监视功能(称为 ADS-B OUT)提供。这些信息将由配备了先进功能(称为 ADS-B IN)的其他飞机直接使用,以支持现有应用和一些尚未开发的应用。本手册介绍了几种机载监视功能,例如基本机载态势感知 (AIRB)、进近目视分离 (VSA) 和基本地面态势感知 (SURF) 以及尾随程序 (ITP) 应用程序,这些功能是在支持 GANP(第四版)的航空系统模块升级 (ASBU) 中引入的。ASBU 包含依赖于 ADS-B 标准的模块,既适用于 ADS-B OUT(B0-ASUR:地面监视的初始能力),也适用于 ADS-B IN,它们是机载监视的关键推动因素。它们的演变在与机载监视相关的特定线程中进行了描述
MASS 包括标准 TCAS 操作模式以及可选择的协同飞行模式,以支持协同飞行情况下的操作,例如编队或会合操作。未选择协同飞行模式时,系统通常作为 TCAS/ACAS II 防撞系统运行。带 MASS 的 T 3 CAS 通常与模式 S/IFF 转发器和内部转发器一起使用。T 3 CAS 已通过与多个行业模型的互操作性测试。
Collin,Antoine,Antoine G. Cottin,Bernard F. Long,Pim Kuus,John Hughes Clarke,Phillippe Archambault,Gunho Sohn和John Miller。 2007。 “浅滩的统计分类方法3000反向散射,以绘制沿海底栖生物栖息地。” 2007年,IEEE国际地球科学和遥感研讨会,Igarss 2007,2007年6月23日至6月28日,3178-81。 加拿大魁北克大学地质系,INRS-ETE,加拿大魁北克大学:电气与电子工程师Inc. https://doi.org/10.1109/igarss.2007.4423520。Collin,Antoine,Antoine G. Cottin,Bernard F. Long,Pim Kuus,John Hughes Clarke,Phillippe Archambault,Gunho Sohn和John Miller。2007。“浅滩的统计分类方法3000反向散射,以绘制沿海底栖生物栖息地。” 2007年,IEEE国际地球科学和遥感研讨会,Igarss 2007,2007年6月23日至6月28日,3178-81。加拿大魁北克大学地质系,INRS-ETE,加拿大魁北克大学:电气与电子工程师Inc. https://doi.org/10.1109/igarss.2007.4423520。加拿大魁北克大学地质系,INRS-ETE,加拿大魁北克大学:电气与电子工程师Inc. https://doi.org/10.1109/igarss.2007.4423520。
注意 本文件由美国运输部赞助发布,旨在交流信息。美国政府对其内容或使用不承担任何责任。美国政府不认可任何产品或制造商。贸易或制造商的名称出现在本文中仅仅是因为它们被认为对本报告的目标至关重要。本报告中的调查结果和结论均为作者的观点,并不一定代表资助机构的观点。本文件不构成 FAA 政策。有关其使用,请咨询技术文档页面上列出的 FAA 赞助组织。本报告可在联邦航空管理局 William J. Hughes 技术中心的全文技术报告页面:actlibrary.tc.faa.gov 以 Adobe Acrobat 便携式文档格式 (PDF) 获得。
收稿日期: 2009-10-19 接受日期: 2010-03-12 个人简介: Yanbo Huang, 博士, 农业工程师, 141 Experiment Station Road, USDA-ARS Crop Production Systems Research Unit, Stoneville, MS 38776, 电话: (662)686-5354, 电邮: yanbo.huang@ars.usda.gov; Steven J. Thomson, 博士, 农业工程师, 141 Experiment Station Road, USDA-ARS Crop Production Systems Research Unit, Stoneville, MS 38776, 电话: (662)686-5240, 电邮: steve.thomson@ars.usda.gov; Yubin Lan, 博士, 农业工程师, USDA-ARS-SPARC-APMRU,
5) AMP(航空电子现代化计划)完成了 FAA/国际民用航空组织 (ICAO)/EUROCONTROL 规定的空中交通管制系统升级,并为 E-3 机队配备了驾驶舱和其他航空电子设备,使 AWACS 能够符合规定的全球所需导航性能 (RNP)、监视和通信标准。不遵守规定将导致空域限制和拒绝,这将影响 AWACS 支持全球响应需要立即现场指挥和控制(C2 战斗管理)的情况的能力。AMP 对驾驶舱的修改包括增加数据链路通信、升级或更换紧急定位技术、语音和数据链路数字无线电、改进的视觉显示和飞行管理系统,以及通过数据链路自动报告位置。更换 2010 年后不可持续的关键航空电子子系统将包括在 AMP 中。
摘要。位于西班牙格拉纳达附近的太阳能热抛物线槽式发电厂 Andasol 3 (AS3) 由 Marquesado Solar SL (MQS) 运营,于 2011 年秋季投入使用。装机容量为 49.9 MW el,结合满负荷下 7.5 小时的热能存储 (TES) 容量,年净发电量超过 165 GWh 1 (Dinter 和 Gonzalez 2014)。德国航空航天中心 (DLR) 开发了一种用于整个抛物线槽式发电厂的机载表征工具。这种称为 QFly SURVEY 的方法使用配备高分辨率数码相机的无人机 (UAV),并提供有效的镜面斜率偏差和每个太阳能集热器元件 (SCE) 光轴的绝对方向。为了验证和演示 QFly SURVEY,2016 年 10 月 24 日至 2016 年 11 月 14 日期间,与 MQS 合作在 AS3 发电厂开展了一项全面的测量活动。主要目标是展示机载太阳能场特性测量的优势,包括快速数据采集、对工厂运行的干扰可忽略不计,并且无需在太阳能场安装任何额外的测量设备。QFly SURVEY 提供太阳能场光学性能的精确定量测量,并通过识别性能低下的区域和光学损耗的原因来支持从太阳能场收集的热能最大化。
3 位移相器。天线波束控制利用 32 个移相器执行,这些移相器为每个天线元件提供必要的电相移。该设计是 3 位实现,允许 45 英寸相位步进。电路中包含一个用于圆极化的正交化网络。每个移相器都使用传统的表面贴装元件构建在印刷微波电路卡上,然后粘合到辐射元件上以形成天线元件模块。移相器按照高可靠性标准制造,没有镀通孔。