摘要 — 遥感技术是全球海洋表面监测的重要环节,雷达是检测海洋污染的有效传感器。当局在实际使用时,通常必须在覆盖面积和雷达收集的信息量之间做出权衡。为了确定最合适的成像模式,基于接收器操作特性曲线分析的方法已应用于由两个在 L 波段运行的机载系统收集的原始数据集,这两个系统都具有非常低的仪器本底噪声。该数据集是在海上控制释放矿物油和植物油期间获得的。研究了各种与极化相关的量,并评估了它们检测浮油覆盖区域的能力。本文报告了主要极化参数的相对顺序。当传感器的本底噪声足够低时,建议使用 HV,因为它提供最强的浮油 - 海面对比度。否则,VV 被发现是检测海面浮油最相关的参数。在所有研究的四极化设置中,与单极化数据相比,没有发现显著的附加值。更具体地说,通过增加仪器噪声水平,证明了所研究的结合四个极化通道的极化量具有主要由仪器本底噪声(即噪声等效西格玛零)驱动的检测性能。该结果是通过向原始合成孔径雷达 (SAR) 数据逐步添加噪声获得的,表明清洁海域和污染区域之间的极化区分主要源于单次反弹散射和噪声之间的差异化行为。因此,使用以低仪器本底噪声收集的 SAR 数据证明了矿物和植物油覆盖的海面雷达散射与布拉格散射没有偏差。
摘要 — 遥感技术是全球海洋表面监测的重要环节,雷达是检测海洋污染的有效传感器。当局在实际使用时,通常必须在覆盖面积和雷达收集的信息量之间做出权衡。为了确定最合适的成像模式,基于接收器操作特性曲线分析的方法已应用于由两个在 L 波段运行的机载系统收集的原始数据集,这两个系统都具有非常低的仪器本底噪声。该数据集是在海上控制释放矿物油和植物油期间获得的。研究了各种与极化相关的量,并评估了它们检测浮油覆盖区域的能力。本文报告了主要极化参数的相对顺序。当传感器的本底噪声足够低时,建议使用 HV,因为它提供最强的浮油 - 海面对比度。否则,VV 被发现是检测海面浮油最相关的参数。在所有研究的四极化设置中,与单极化数据相比,没有发现显著的附加值。更具体地说,通过增加仪器噪声水平,证明了所研究的结合四个极化通道的极化量具有主要由仪器本底噪声(即噪声等效西格玛零)驱动的检测性能。该结果是通过向原始合成孔径雷达 (SAR) 数据逐步添加噪声获得的,表明清洁海域和污染区域之间的极化区分主要源于单次反弹散射和噪声之间的差异化行为。因此,使用以低仪器本底噪声收集的 SAR 数据证明了矿物和植物油覆盖的海面雷达散射与布拉格散射没有偏差。
摘要 过去几年,机载飞机、卫星和地面信息系统之间基于互联网协议 (IP) 的无线连接显著增长,这种现象被一些人称为“联网飞机”(Bellamy,2014 年)。这一趋势远远超过了乘客高速互联网服务,它将数千个连接到安全关键系统(如发动机、飞行控制、驾驶舱显示器和生命支持系统)的嵌入式自动传感器集成到在线基础设施中。机载传感器不断向全球机身、发动机和航空电子设备制造商、航空公司控制中心和第三方供应商发送数据包(Orjih,2006 年)。物联网 (IoT) 是一种小型、低功耗、可编程、联网智能设备,其迅猛发展加速了联网飞机的转型(Lueth,2014 年)。简而言之,有翼局域网正在将互联网扩展到 30,000 英尺。但是,将飞机连接到互联网也会使安全至关重要的机载系统面临严重的网络物理安全风险,而旅行者对此大多一无所知。这种无知可能会一直持续下去,直到发生坠机或其他事件与成功的网络攻击直接相关(但愿不会发生)。本研究论文将尝试通过揭示联网飞机日益增加的网络物理安全风险来缩小这一知识差距。接下来,它将讨论航空业的内部威胁。它还将提出风险管理方法(其中一些已经在实施中),以帮助降低这些新出现的网络安全风险,从而实现移动带来的可观的运营、经济和商业效益,而不会让旅行者面临过度的安全风险。1.简介
摘要 — 遥感技术是全球海洋表面监测的重要环节,雷达是检测海洋污染的有效传感器。当局在实际使用时,通常必须在覆盖面积和雷达收集的信息量之间做出权衡。为了确定最合适的成像模式,基于接收器操作特性曲线分析的方法已应用于由两个在 L 波段运行的机载系统收集的原始数据集,这两个系统都具有非常低的仪器本底噪声。该数据集是在海上控制释放矿物油和植物油期间获得的。研究了各种与极化相关的量,并评估了它们检测浮油覆盖区域的能力。本文报告了主要极化参数的相对顺序。当传感器的本底噪声足够低时,建议使用 HV,因为它提供最强的浮油 - 海面对比度。否则,VV 被发现是检测海面浮油最相关的参数。在所有研究的四极化设置中,与单极化数据相比,没有发现显著的附加值。更具体地说,通过增加仪器噪声水平,证明了所研究的结合四个极化通道的极化量具有主要由仪器本底噪声(即噪声等效西格玛零)驱动的检测性能。该结果是通过向原始合成孔径雷达 (SAR) 数据逐步添加噪声获得的,表明清洁海域和污染区域之间的极化区分主要源于单次反弹散射和噪声之间的差异化行为。因此,使用以低仪器本底噪声收集的 SAR 数据证明了矿物和植物油覆盖的海面雷达散射与布拉格散射没有偏差。
摘要 电动动力系统具有与带有内燃机的传统动力系统不同的特性,并且需要非常规的飞机设计才能充分发挥其潜力。因此,本文介绍了一种识别带有电动动力系统的潜在飞机设计的方法。LuFo 项目 GNOSIS 的项目合作伙伴收集了动力系统架构、气动相互作用、机载系统和操作策略等领域的有前景的技术选项。从全球排放(CO 2 )、局部排放(NO X 和噪音)和运营成本方面评估了技术选项对通勤飞机的影响。评估考虑了 2025 年和 2050 年投入使用,并以参考飞机 Beechcraft 1900D 为基础。文献综述和简化计算使得能够对气动相互作用、系统和操作策略进行评估。初步的飞机设计工具通过引入“动力混合”和“动力分配”两个参数来评估不同的动力系统架构。随后,将兼容的技术选项汇编成技术篮,并使用与理想解的最短欧几里得距离和与最差解的最远欧几里得距离进行排序(按与理想解的相似性排序技术 (TOPSIS) 方法)。对 CS 23 法规的分析导致了高翼设计,并排除了在飞机尾部带有燃气涡轮的部分涡轮电动动力系统架构。对于 2025 年,选择了带有两个额外电动翼尖螺旋桨的部分涡轮电动动力系统。到 2050 年,串行混合动力系统使用燃气涡轮或燃料电池与电池组合,为机翼前缘的分布式电动推进器提供动力。在这两种情况下,飞机设计都包括电动环境控制系统、电动起落架和用于主飞行控制和起落架的电液执行器。
2.确定 CS-FCD、CS-MMEL 和 CS-CCD 适用运行适用性要求的参考日期为 2011 年 12 月 31 日。3.原产国适航当局型号合格证数据表编号TCCA 型号合格证数据表编号A-236(初次修订 2015 年 12 月 17 日,或后续修订) 4.原产国适航当局认证依据 参考 TCCA 型号合格证数据表编号A-236。5.EASA 适航要求 EASA 认证规范 25,修订版 12。EASA 认证规范全天候运行 (CS-AWO),初始版本。5.1 特殊条件 B-01 结冰条件下的飞行 B-02 失速和预定运行速度 B-03 运动和驾驶舱控制的影响 B-04 静态方向、横向和纵向稳定性以及低能耗意识 B-05 B-14 飞行包线保护设计大角度进近 B-17 正常载荷系数限制系统 B-26 在符合条件的湿槽或 PFC 跑道上缩短着陆距离 C-02 复合材料油箱 – 未容纳的发动机碎片 C-06 设计俯冲速度 C-07 设计机动载荷 C-08 飞行员限制力和扭矩(侧杆) C-12 CFRP 油箱的轮胎碎片与燃油泄漏 C-13 自动刹车系统载荷 D-04 坠机后火灾 – 复合材料结构 D-07 座椅安装的热量释放和烟雾排放 D-08 飞行中火灾 – 复合材料和特殊结构 D-14 无牵引杆牵引 D-16 控制面位置感知和 EFCS E-01 水/冰燃料系统 E-11 CFPR 机翼油箱的耐火能力 F-01 HIRF 保护 F-10 单一欧洲天空的数据链服务 F-11 飞行记录器、数据链记录 F-14 飞行仪表外部探头 - 结冰条件下的鉴定 F-21 机载系统和网络安全 F-29 锂电池安装 F-32 不可充电锂电池安装
Easwaran,机载系统中心,DRDO,班加罗尔。DR. BIREN ROY 空间科学和/或设计奖 2014 Prakash Chand Jain 博士,科学家“F”,DRDL,海得拉巴。2015.Shri A. Muraleedharan,科学家/工程师“H”,VSSC,特里凡得琅。2016 Shri K. Alaguvelu,DD,推进综合体,ISRO Mahendragiri。2017 Shri M. Narayanan Namboodiripad,OS 和集团总监,CEAG,VSSC。2018 Dr. G. Ayyappan,OS 和项目总监,STC,VSSC。2019 Shri Umamaheswaran R,印度空间研究组织总部科学秘书。Dr. BIREN ROY TRUST 奖 2014 Shri S. Subrahmanyan,班加罗尔 HAL 主任(运营)。2015.Dr. K.M.Rajan,浦那 ARDE 主任。2016 Dr. RK Sharma,HSTDV 项目主任,DRDL 海得拉巴。2017 Dr. P V Venkitakrishnan,VSSC.Thiruvananthapuram 材料和机械实体副主任。2018 Dr. Sudha UPV,班加罗尔 ADA 科学家/工程师“E”。2019 Vemana Venkateswara Rao 博士,ARDE 主任。博士。 V.M.2013 年 GHATAGE 奖 Shri P. Rambabu,科学家“D”和 DD 及其来自海得拉巴 RCMA、CEMILAC 的团队。2014 S. Vasanthi 女士,DGM(设计)和 Shri DSD Prasada Rao,DGM(设计),RWRDC,HAL 班加罗尔。2015。Shri V. Sridharan,LCS、Tejas、HAL 总经理,班加罗尔。2016 Shri Shyam Mohan N,项目总监,RLV-TD、VSSC,特里凡得琅。2017 年联合授予 Ambalal Vinayak Patel 博士,科学家/工程师“F”,ADA 和 Gp。上尉KN Santosh,VSM,首席软件工程师(航空电子 SU 30),AF Yemlur,班加罗尔。2018 年联合授予 HAL 班加罗尔 DY GM(设计)Shri Abhishek Singh 及其团队
专为国家安全、地理空间情报、搜索和救援应用而设计 哥本哈根,2022 年 1 月 17 日——领先的数字成像技术开发商 Phase One 今天宣布推出 iXM-GS120 航拍相机,旨在满足国家安全和地理情报收集项目的苛刻需求。iXM-GS120 专为无人机 (UAV)、固定翼飞机和直升机而设计,是第一款基于先进全局快门传感器技术设计的广角 120MP 分辨率相机。Phase One 安全与空间副总裁 Dov Kalinski 表示:“Phase One 设计的 iXM-GS120 可在偏远地区的长期任务中可靠、免维护地运行,这通常是国家安全和情报收集活动的典型特征。”“对于传统的检查和测绘应用,地理空间用户会发现新相机可以高效且经济地捕获大量高质量图像。” iXM-GS120 彰显了 Phase One 致力于开发可靠、创新的航空成像解决方案的承诺。单传感器设计结合 120MP 分辨率,可确保快速收集每一帧中广泛关注区域的详细信息,从而缩短飞行时间并提高效率。在处理方面,这种设计还消除了将多传感器相机系统的图像场景拼接在一起的耗时工作。这款新相机是 Phase One 开发的最高效的机载系统。iXM-GS120 集成了 CMOS 全局快门传感器,拥有每秒七帧的出色捕捉率和宽动态范围。高灵敏度、低噪音技术使相机能够在低光照条件下收集数据,从而将其操作窗口每天延长数小时。iXM-GS120 有 RGB 彩色和单色版本可供选择,其应用范围通过广泛的视野选择进一步扩大,可在多种不同的飞机高度和速度下运行。兼容的视野包括从 35 毫米到 300 毫米的一系列镜头。“iXM-GS120 是为每帧图像都至关重要的应用而设计的,”Kalinski 说。“在国家安全活动中,iXM-GS120 将可靠地处理与广域持续监视 (WAPS)、地理空间情报 (GEOINT)、搜索和救援以及其他情报监视侦察 (ISR) 相关的长期任务。”这款紧凑型相机机身重量仅为 630 克,可轻松安装在各种平台上,包括 Group 3 战术无人机,以实现长续航时间操作。了解更多信息,请访问 https://phaseone.ws/security_and_space 观看视频:https://phaseone.ws/ixm_gs120_video
PAL § 3102-e(1)(b) 下的新兴技术是指:1) 先进材料和加工技术,涉及开发、修改或改进一种或多种材料或方法,以生产具有改进性能特征或特殊功能属性的设备和结构,或激活、加速或以其他方式改变化学、生化或医学过程。此类技术包括但不限于以下内容:金属合金、金属基体和陶瓷复合材料、先进聚合物、薄膜、膜、超导体、电子和光子材料、生物活性材料、生物加工、基因工程、催化剂、废物减排和废物处理技术;2) 工程、生产和国防技术,涉及基于知识的控制系统和架构、先进的制造和设计流程、设备和工具,或推进、导航、制导、航海、航空和航天地面和机载系统、仪器和设备。此等技术包括但不限于下列各项:计算机辅助设计与工程、计算机集成制造、机器人与自动化设备、集成电路制造与测试设备、传感器、生物传感器、信号与图像处理、医疗与科学仪器、精密加工与成型、生物与遗传研究设备、环境分析、补救、控制与预防设备、国防指挥与控制设备、航空电子与控制装置、导弹与航天器推进装置、军用飞机、航天器以及监视、跟踪与防御预警系统;3)用于生产电子、光电子、机械设备和带有交互式媒体内容的电子发行产品的电子和光子器件及部件。此等技术包括但不限于下列各项:微处理器、逻辑芯片、存储芯片、激光器、印刷电路板技术、电致发光、液晶、等离子和真空荧光显示器、光纤、磁信息与光信息存储、光学仪器、透镜与滤波器、单工与双工数据库以及太阳能电池; 4)涉及先进计算机软件和硬件、可视化技术和人机界面技术的信息和通信技术、设备和系统。这些技术包括但不限于:操作和应用软件、人工智能、计算机建模和仿真、高级软件语言、神经网络、处理器架构、动画和全动态视频、图形硬件和软件、语音和光学字符识别、大容量信息存储和检索、数据压缩、宽带交换、多路复用、数字信号处理、和光谱技术;5)生物技术是涉及对生物体进行科学操作的技术,特别是在分子和亚分子遗传水平上,以生产有助于改善植物、动物和人类生活和健康的产品;以及与这些改进相关的科学研究、药理学、机械和计算应用和服务。此类应用和服务所包含的活动应包括但不限于替代 mRNA 剪接、DNA 序列扩增、抗原转换、生物增强、生物富集、生物修复、染色体步行、细胞遗传工程、DNA 诊断、指纹识别和
B-1 Lancer 简介:一种远程、可空中加油的多用途轰炸机,能够执行洲际任务并突破敌方防御,携带空军库存中制导和非制导武器的最大有效载荷。功能:远程常规轰炸机。运营商:ACC、AFMC。首飞:1974 年 12 月 23 日(B-1A);1984 年 10 月 18 日(B-1B)。交付:1985 年 6 月 - 1988 年 5 月。IOC:1986 年 10 月 1 日,德克萨斯州戴斯空军基地。(B-1B)。生产:104 架。库存:63 架。飞机位置:得克萨斯州戴斯空军基地。;加利福尼亚州爱德华兹空军基地;佛罗里达州埃格林空军基地;南达科他州埃尔斯沃思空军基地。承包商:波音公司、AIL 系统公司、通用电气公司。动力装置:四台通用电气 F101-GE-102 涡扇发动机,每台推力 30,780 磅。住宿:飞行员、副驾驶和两名 WSO(进攻和防御),在零/零 ACES II 弹射座椅上。尺寸:翼展 137 英尺(前展)至 79 英尺(后掠),长度 146 英尺,高度 34 英尺。重量:最大总重 477,000 磅。升限:超过 30,000 英尺。性能:海平面速度 900+ 英里/小时,洲际航程。武器装备:三个内部武器舱可容纳多种武器,包括最多 84 枚 Mk 82(500 磅)或 24 枚 Mk 84(2,000 磅)通用炸弹;最多 84 枚 Mk 62(500 磅)或 8 枚 Mk 65(2,000 磅)快速打击水雷;最多 30 枚 CBU-87/89 集束炸弹或 30 枚 CBU-103/104/105 WCMD;最多 24 枚 GBU-31 或 15 枚 GBU-38 JDAM;最多 24 枚 AGM-158A JASSM(还集成了 AGM-158B JASSM-ER);GBU-54 激光 JDAM;或混合使用,每个舱室使用不同类型的武器。评论 提议替代 B-52。20 世纪 70 年代开发和测试了四架 B-1A 原型机。项目于 1977 年取消,但飞行测试仍在继续。项目于 1981 年作为 B-1B 变体恢复。翼身融合结构、可变几何设计和涡扇发动机提供远距离、机动性、高速和生存能力。大量有效载荷和长时间滞留。进攻性航空电子设备包括用于跟踪-瞄准-攻击移动车辆的 SAR、静止目标的自我瞄准和跟随地形。GPS 辅助 INS 让机组人员无需地面导航辅助设备即可自主导航并精确攻击目标。现存变体 n B-1B。大幅升级的 B-1A,可用有效载荷增加 74,000 磅,雷达改进,雷达横截面减少,但最大速度降至 1.2 马赫。共生产了 100 架 B 型飞机,但美国空军在 2002 年将库存减少到 67 架。1998 年 12 月在沙漠之狐行动中首次用于对伊拉克的战斗。多年来配备了 GPS、智能武器运载系统、改进的机载系统
