本文的目的是介绍一种基于 Simulink 模型的方法,用于仿真和优化一个强大的卫星数据单元 (SDU),该单元能够提供安全和非安全航空移动卫星服务,包括在机载网络中运行的能力。为此,对 SDU 中要处理的主要航空电子系统信号和数据流量进行了分析和建模。这里的主要贡献是设计 SDU 数据流量模型,该模型集成了航空电子系统中的不同仿真模型,例如自动相关监视 - 广播、飞机通信寻址和报告系统以及飞行中连接,以供将来实施和优化,从而允许在模块化框架中对机载设备进行特性描述。最后,本文介绍了一种建模和分析工具,旨在为航空业提供减少机载设备数量(从而减少飞机重量以降低燃料消耗)和满足乘客连接需求的方法。最后,请注意,此建模是朝着开发确保更高操作安全性和易于维修和维护的设备迈出的一步。
1. 适用性 (a) 最低性能标准。本技术标准令 (TSO) 规定了主动交通咨询系统 (TAS) 机载设备必须满足的最低性能标准,以便通过适用的 TSO 标记进行识别。任何需要如此识别的主动交通咨询系统 (TAS) 机载设备,只要是在本 TSO 发布之日或之后制造的,都必须符合 RTCA 文件编号 RTCA/DO-197A“主动交通警报和防撞系统 I (ACTIVE TCAS 1) 的最低运行性能标准”第二部分 (2)(1994 年 9 月 12 日)中规定的标准,但本文件附录 1 中列出的例外情况除外。 (b) 设备类别。 (1) A 类。设备包含一个水平状况显示器,用于指示入侵飞机的存在和相对位置,以及一个声音警报,用于通知机组人员有交通咨询 (TA)。 (2) B 类。包含声音警报和视觉通告的设备,用于通知机组人员 TA。 (c) 环境标准。设备应符合 1997 年 7 月 29 日发布的 RTCA/DO-160D“机载设备的环境条件和测试程序”中规定的测试条件。 (d) 软件标准。如果物品包括数字计算机,则必须根据 1992 年 12 月 1 日发布的 RTCA DO-178B“机载系统和设备认证中的软件注意事项”开发软件。 2. 标记。根据 14 CFR 第 21.607(d) 节中规定的标记,以下要求适用于根据本 TSO 制造的设备的所有单独组件:
升级有前途的航空综合体的机载设备时,一项重要任务是评估操作人员在控制飞机时的状态 [1, 2]。飞行重力、工作负载等因素会显着影响飞行任务的质量。评估人类操作员状态的方法之一 [3-5] 是研究他的脑电图,特别是根据疲劳、入睡等迹象。脑电图 [6, 7] 可以定性和定量分析人脑的功能状态及其对各种刺激或缺乏刺激的反应。因此,对大脑阿尔法节律的分析有助于确定平静清醒状态与注意力和心理活动增加之间的界限。 1 这项工作得到了俄罗斯基础研究基金会的支持,项目编号:18-08-01142。
我们提供独特的定制设计解决方案来解决一系列客户挑战。为从轻型公务机和旋翼机到大型双通道商用飞机的整个飞机系列提供解决方案。我们还支持军用飞机系统和机载设备。我们还在航空业的邻近市场领域开展业务,包括航天、海洋和工业,利用这些市场的相关技术专长。我们能够通过通用的“飞行合格” 3000 系列产品满足较小的项目机会。我们还提供数字校正的高精度产品系列,称为 3700 系列,专为测试应用(包括飞行)量身定制。请访问我们的网站以获取这些产品系列的更多详细信息。
飞行信息物理融合系统(CPS)是CPS在航空领域的应用,在电子飞行系统的基础上,使系统更加信息化、网络化,是下一代飞行系统的发展方向。以美国新研制的“梦想飞机”波音787客机为例,它采用了更先进的传感技术,拥有强大的计算能力,更加鲁棒、智能化的通信和控制能力,具备连接网络的能力,集成了更多机载设备和软件模块。在天地一体的全球体系中,这样的飞行器就像飞行中的单一节点,既能保证自身的飞行安全,又能获得准确的位置和时间信息,还可以将这些信息实时传递给科研人员,供科研人员进行科学决策。
为追求轻量化,机身采用硬壳式结构设计,主翼采用半硬壳式结构。机翼前缘和后缘采用由多条肋条和纵梁组成的骨架结构,机翼表面采用贴有太阳能电池的树脂薄膜。为方便运输,机身可分为两部分,主翼可分为三部分,各连接部分采用插拔式保持结构,既保持了刚度又减轻了重量。从尾翼、发动机舱、起落架等主要部件到机载设备支架等小部件,最大限度地利用了复合材料,实现了轻量化。因此,复合材料结构总重量仅为设计的35公斤。太阳能飞机成功获取了各种数据,并证实了为通信卫星和高空飞机建立通信环境的可能性。主要优势
飞机电子系统在雷击放电过程中的性能主要由机身和尾翼材料的参数决定[1]。近年来,由复合材料(碳纤维和玻璃纤维)制成的飞机机身设计得到了广泛的发展[2]。复合材料在无人机制造中应用最为广泛。用复合材料制造飞机机身需要开发新的方向,以确保电磁影响和相互作用期间的电磁兼容性 [3, 4]。机载设备在外部电磁影响下的抗噪声能力决定了整架飞机运行的质量和可靠性。最危险的外部电磁影响类型之一是雷电放电的影响。雷电对飞机的影响可分为两个部分:间接雷电放电(其特征是飞机附近云层之间的放电)和直接放电到飞机机身中[4, 5]。由于复合材料在飞机结构中的使用,确保机载设备的抗噪性和飞机的抗雷击能力的任务呈现出新的形态。
ITU IMT 2030 和其他愿景表明,6G 的未来架构正在朝着与地面网络融合的多层空间网络发展。卫星是该网络的主要元素,正在发展为包含大型星座的互连多轨道。英国的传统是大型 GEO 卫星,但随着向星座制造的转变,需要进行变革和重组。蓬勃发展的英国小型卫星社区的存在应该在这一变化中发挥作用。卫星运营是英国的另一个优势,但随着三家运营商中的两家在 2023 年与欧洲和美国的主要公司合并,其持续发展可能会受到威胁。随着机载设备越来越依赖数字处理,对半导体存储和处理器海外供应链的依赖成为竞争的潜在障碍。HAPS 和 UAS 中 NTN 的其他组成部分是新兴元素,但具有一些英国需要培育的优势。
根据战术要求,炸弹主体有各种引信组合。引信分为两大类 - 机械和电气。机械和电气引信可以安装在炸弹主体的头部和/或尾部。通过在保险叶片和引信主体中插入安全开口销或保险线,可使这些引信保持安全状态。机械引信通过保险线或系索启动,或者通过武器从飞机上释放时从机载设备传输到引信的电能启动。当机械引信武器被释放并从飞机上掉落时,保险线被从保险叶片上拉出。这样保险叶片就可以在气流中旋转,从而启动引信。出于紧急情况或其他战术原因,飞行员可以选择让保险线与武器一起落下。当飞行员使用此选项时,保险叶片无法旋转。因此,武器保持未保险状态。当电引信武器从飞机上释放时,它会从飞机发射电路接收必要的电压信号以启动引信。