4.1.重要过程 ...................................................................................................................... 75 4.2.任务 ............................................................................................................................ 76 4.2.1.经验方法 ............................................................................................................. 76 4.2.2.机械方法(分析解决方案).................................................................................... 79 4.2.3.数值模型模拟挥发 ............................................................................................. 81 4.3.传输和沉积 - 高斯、拉格朗日、欧拉类型模型 ............................................................................................. 81 4.3.1.传输方法 ................................................................................................................ 82 4.3.2.转换过程 ................................................................................................................ 85 4.3.3.沉积过程 ................................................................................................................ 86 4.4.多媒体模型(包括逸度模型) ............................................................................. 87 4.5.模型收集 ...................................................................................................................... 89 4.6.第 2 步筛选:考虑科学和技术质量标准。92 4.7.模型评估结果 ................................................................................................................ 94 4.7.1.估算农药挥发 .............................................................................................................. 94 4.7.2.估算农药运输和沉积 ............................................................................................. 102 4.7.3.多媒体模型 ............................................................................................................. 109 4.8.空气模型在监管环境中的应用 ............................................................................. 117 4.8.1.短距离运输的现行方法 ............................................................................................. 117
由 IRAC MoA 团队制作。文档受 © 版权保护。基于杀虫剂 MoA 分类方案,版本 11.2 照片和 SEM 由先正达提供 如需更多信息,请访问 IRAC 网站:www.irac-online.org。
1972 年末,美国环境保护署署长威廉·鲁克尔豪斯宣布取消 DDT 的登记,实际上禁止在美国使用这种自二战后推出以来最流行的杀虫剂之一。环保主义者称赞 DDT 禁令是美国环保运动的最高成就,也是 1962 年雷切尔·卡逊出版《寂静的春天》后十年行动主义的顶峰。卡逊对美国滥用化学农药及其造成的大面积生态污染的严厉批评,像其他书籍一样抓住了美国人的心,并在总统科学顾问委员会和国会引发了广泛的听证会。1970 年《国家环境保护法》的通过和同年环境保护署 (EPA) 的成立向美国人发出信号,他们的担忧已被听到。DDT 禁令终止了美国最臭名昭著和破坏环境的化学品之一的使用。美国农业和公共卫生历史上的黑暗篇章还有比这更完美的结局吗?1982 年 5 月,几位观鸟朋友(退休人员)邀请我和他们一起去纽约罗切斯特附近,在一天内寻找尽可能多的鸟类。重要的一天从凌晨 1 点左右开始,我们出发去寻找夜间活动的猫头鹰和夜鹰。下午 4 点半,我们到达了挪威路,这是罗切斯特以西著名的候鸟聚集地。在清晨的黑暗中,我们听到了一只美洲丘鹬的叫声,
每个杀虫剂的决策都具有可变的风险组合。棉花杀虫剂的使用指南确定了7种不同的危险因素(对天然敌人的选择性,目标有害生命,水生生物,陆地野生动植物,传粉媒介,旁观者吸入和粉丝种群中的杀虫剂耐药性)。在可能的情况下,种植者应针对使这些风险最小化的产品。虽然“杀虫剂A”具有出色的目标害虫功效,并且对旁观者的健康具有极低的风险,但它给天然敌人,传粉媒介,水生和陆地野生动植物带来了高风险,并且在粉状粉中具有更高的抗性风险。“杀虫剂B”对所有因素构成了低风险,除了天然敌人(中等风险)和水生寿命(高风险)。目标是旨在提高出色的功效,同时尽可能降到风险。在此示例中,“杀虫剂B”比“杀虫剂A”更好地满足了此标准。
此预印本版的版权持有人于2025年2月14日发布。 https://doi.org/10.1101/2025.02.11.25321773 doi:medrxiv preprint
本指南的初稿由世界卫生组织 (WHO) 任命的起草委员会编写,委员会成员包括美国佛罗里达州巴拿马城佛罗里达农工大学的 Jane Bonds 博士、美国佛罗里达州盖恩斯维尔美国农业部蚊蝇研究组的 Gary Clark 博士、美国佛罗里达州盖恩斯维尔的 David Dame 博士、马来西亚槟城马来萨理科大学的 Zairi Jaal 博士、美国佛罗里达州帕尔梅托马纳提县蚊虫控制中心的 Mark Latham 先生、马来西亚吉隆坡医学研究所的 Han Lim Lee 博士、英国阿斯科特帝国理工学院的 Graham Matthews 教授、瑞士日内瓦世卫组织的 Michael Nathan 博士和瑞士日内瓦世卫组织农药评估计划 (WHOPES) 的 Morteza Zaim 博士。所有专家均未声明对这些指南的主题感兴趣。
虽然 BGT 仍处于开发阶段,但它正在开展多项合作(包括与 Envu(前拜耳环境科学公司)和 Clarke Mosquito Control 的项目),这些合作已发展成为商业协议,并进一步证明了该公司产品的优越性。早在 2024 年 9 月,该公司就与大型农业科学公司和塔塔化工的子公司 Rallis India 合作实现了 Flavocide™ 的中试规模生产,表明 Flavocide™ 可以在预商业规模下以一致的质量和产量生产。BGT 计划在 CY25 年底向澳大利亚监管机构 (APVMA) 提交其对 Flavocide™ 活性成分的首次监管批准申请,目标是在 CY27 年中期获得监管批准。重申先前的估值范围
家蝇(Musca domestica L.,双翅目:家蝇科)是全球最常见的蝇类之一,在传播对兽医和医学都很重要感染和病原体方面发挥着重要作用。这包括传播肠道蠕虫卵以及体外寄生虫、体内寄生虫和原生动物囊肿。防治害虫的方法包括生物、物理、化学和农业技术方法。化学方法仍然是控制害虫种群的主要策略;然而,过度使用、增加剂量和治疗频率导致了抗药性的产生。迄今为止,已在自然种群中记录了大量对杀虫剂产生抗药性的记录。抗药性产生的一个重要机制是细胞色素系统的酶对外来化合物的解毒。本研究旨在总结目前关于 P450 单加氧酶在产生家蝇杀虫剂抗药性方面的作用的知识。本综述重点介绍了家蝇中导致对最常见杀虫剂产生抗性的细胞色素 P450 单加氧酶的多样性及其在基因组中的位置。在这项研究中,我们识别并描述了与杀虫剂抗性相关的主要 P450 候选基因。作者还总结并系统化了该领域的最新研究成果。
摘要:重金属离子和农药的生物修复既经济又环保。微生物修复被认为优于传统的非生物修复工艺,因为它具有成本效益、减少生物和化学污泥、对特定金属离子具有选择性以及在稀释废水中的高去除效率等优点。以生物炭为载体的固定化技术是推进微生物修复的重要方法之一。本文概述了生物炭基材料,包括其设计和生产策略、物理化学性质以及作为微生物吸附剂和载体的应用。本综述还概述了能够应对进入环境的各种重金属离子和/或农药的微生物。农药和重金属的生物修复会受到微生物活动、污染物的生物利用度以及 pH 值和温度等环境因素的影响。此外,通过阐明相互作用机制,本文总结了重金属和农药的微生物修复。在这篇综述中,我们还整理并讨论了利用生物炭和微生物进行各种生物修复策略的研究成果,以及生物炭上固定化细菌如何有助于改进生物修复策略。本文还总结了农药和重金属的来源和危害。最后,基于上述研究,本研究概述了该领域的未来发展方向。
昆虫对杀虫剂的抗性是我们时代最紧迫的问题之一。 对抵抗机制的研究是解决现代生物学的整个基本和实际问题的重要联系。 杀虫产品的长期和密集使用是由不同昆虫种群的耐药性发展引起的。 暴露于杀虫剂会导致氧化应激和昆虫抗氧化剂状态的变化。 目前的综述旨在积累神经毒性杀虫剂研究的结果,以其对昆虫抗氧化剂系统参数的影响。 文献来源是通过利用电子数据库搜索的。 研究和结构化了收集的信息。 该评论的特征是昆虫抗氧化剂系统,通过作用机理对杀虫剂进行了分类,并证明了杀虫剂暴露与氧化应激之间的联系。 结果表明,具有不同活性成分的杀虫剂可能会对不同物种的昆虫的抗氧化剂状态产生重大影响。 在某些情况下,这表明了酶的活动和其他情况下的增加 - 通过减少。 因此,刺激氧化应激和昆虫抗氧化能力的损害是大多数杀虫剂的毒性机制。昆虫对杀虫剂的抗性是我们时代最紧迫的问题之一。对抵抗机制的研究是解决现代生物学的整个基本和实际问题的重要联系。杀虫产品的长期和密集使用是由不同昆虫种群的耐药性发展引起的。暴露于杀虫剂会导致氧化应激和昆虫抗氧化剂状态的变化。目前的综述旨在积累神经毒性杀虫剂研究的结果,以其对昆虫抗氧化剂系统参数的影响。文献来源是通过利用电子数据库搜索的。研究和结构化了收集的信息。该评论的特征是昆虫抗氧化剂系统,通过作用机理对杀虫剂进行了分类,并证明了杀虫剂暴露与氧化应激之间的联系。结果表明,具有不同活性成分的杀虫剂可能会对不同物种的昆虫的抗氧化剂状态产生重大影响。在某些情况下,这表明了酶的活动和其他情况下的增加 - 通过减少。因此,刺激氧化应激和昆虫抗氧化能力的损害是大多数杀虫剂的毒性机制。