Cyclonic Ross Gyre(RG)占据了南大洋的西南太平洋地区(图1A)。水文数据(Gouretski,1999),卫星高度测定(Dotto等,2018)和建模(Rickard等,2010)的证据表明,RG在海面以下3,000 m以上,延伸了约20 sv,运输于约20 sv,占据了约20 sv的运输,占主导地位的大型热热结构。水平RG范围受到南部的大陆架断裂和北部和西部的太平洋 - 北极山脊(PAR)的限制(图1A)。RG的向南流动的东部肢体受地形的强烈约束(Patmore等,2019),其位置更可变(Dotto等,2018; Sokolov&Rintoul,2009)。东部RG肢体和邻近的南极圆极电流(ACC),向Amundsen Sea(AS)架子供应温暖的圆形深水(CDW)(Jenkins等,2016; Nakayama等,2018),在到达冰架腔时,它可以快速融化。这种海洋驱动熔化的增加会导致附近的Amundsen-Bellingshausen海洋中的冰盖变薄(Depoorter等,2013; Jenkins等,2016)。
在发布政策中指定了此版本的手稿的重复使用条款和条件。使用受版权保护的作品需要权利持有人(作者或出版商)的同意。可根据创意共享许可证或发布者的定制许可提供的作品可根据其中包含的条款和条件使用。有关更多信息和条款和条件,请参见编辑网站。此项目是从IrisUniversitàPolitecnicadelle Marche(https://iris.univpm.it)下载的。引用时,请参阅已发布的版本。
摘要 - 混合超级电容器(HSC)是创新的储能解决方案,在许多应用领域中变得至关重要。他们的性能受到多个参数的强烈影响,例如温度条件,负载特征和电荷(SOC)。出于这个原因,在不同情况下表征其表演变得至关重要。调查性能的最佳方法之一是采用电化学阻抗光谱(EIS)测量。但是,由于HSC是一项最近的技术,因此目前在文献中尚不提供针对阻抗分析的数据库和研究。因此,这项工作介绍了在不同的温度和SOC条件下进行大型测量运动的结果,以获取大型频率范围(从1 MHz到100 kHz)的阻抗数据。构造的数据集已用于研究阻抗异常,并分析温度和SOC可能对HSC阻抗产生的影响。大型获得的数据集也可以用于诊断和预后目的。本研究中使用的数据集可从https://doi.org/10.6084/m9.figshare.24321496获得。
摘要目的:用脑部计算机界面系统对运动皮层激活进行神经反馈训练可以增强中风患者的恢复。在这里,我们提出了一种新方法,该方法训练与运动性能相关的静止状态功能连接,而不是与运动相关的激活。方法:使用神经反馈和源功能连通性分析和视觉反馈,将十个健康受试者和一名中风患者在其手运动区域和其他大脑之间受过训练的α波段连贯性。结果:十分之一的健康受试者中有7个能够在一次疗程中增加手运动皮层和其他大脑其他大脑之间的α波段连贯性。慢性中风的患者学会了增强其受影响的原发性运动皮层的α波段连贯性,该病神经皮层在一个月内应用了一个月。连贯性在靶向运动皮层和α频率中特别增加。这种增加与中风后运动功能的临床有意义且持久的改善有关。结论:这些结果提供了概念证明,即对α波段连贯性的神经反馈训练是可行的,并且在行为上是有用的。意义:该研究提供了证据表明α波段在运动学习中的作用,并可能导致新的康复策略。1简介大脑界面(BCI)的技术可以监测大脑活动和生成有关活动模式特定变化的实时输出。这特别显示了有关感觉运动节奏(SMR)的表明。记录的受试者会收到有关与他/她的努力相关的神经活动的反馈,因此可以学会自愿调节大脑活动(Kamiya,1969)。SMR对应于α和β频率(〜8-30 Hz)中感觉运动皮层中神经元基的活性,这被真实或想象中的运动抑制(Arroyo等,1993; Pfurtscheller等人,2006年)。人类自愿调节SMR的能力导致BCI的发展用于运动替代,即控制假体和机器人设备(Galan等,2008; McFarland等,2008)。BCI技术的最新应用包括通过反馈训练大脑模式。在神经居住中,神经反馈的兴趣主要在于它可能改善脑部病变患者恢复的潜力(Birbaumer等,2007; Daly等,2008)。运动康复的神经反馈主要旨在训练SMR调节(Buch等,2008; Broetz等,2010; Caria等,2011; Ramos-Murguiarlday等,2013),因此可以看作是对运动成像训练的支持(Mattia等人(Mattia等,2012)。
Köhler和Milstein(1975)对杂交瘤技术的开发通过在研究和开发工作中的常规使用单克隆抗体(MAB)来彻底改变了免疫学领域,从而导致了他们今天在诊所的成功应用。 尽管需要重组良好的制造实践生产技术来生产临床级别的mAB,但学术实验室和生物技术公司仍然依靠原始的杂交瘤系列来稳定而轻松地以适度的价格生产高抗体产量。 在我们自己的工作中,我们在使用杂交瘤衍生的mAB时面临着一个主要问题:无法控制产生的抗体形式,这是重组产生确实允许的灵活性。 我们着手通过直接在杂交瘤细胞的免疫球蛋白(IG)基因座中的基因工程抗体来消除这一障碍。 我们使用了簇状的定期间隔短的短膜重复序列(CRISPR)/CRISPR相关蛋白9(CAS9)和同源指导修复(HDR)来修改抗体的格式[mAb或抗原结合片段(FAB')]和同型。 本协议在几乎没有动手的时间内描述了一种直接的方法,导致稳定的细胞系分泌高水平的工程抗体。 亲本杂交瘤细胞保持在培养中,并用针对IG基因座感兴趣的指导RNA(GRNA)转染了IG基因座和HDR模板,以敲击所需的插入物和抗生素耐药性基因。 通过施加抗生素压力,在遗传和蛋白质水平上扩展并表征抗性克隆,以产生改良的mAb而不是亲本蛋白。Köhler和Milstein(1975)对杂交瘤技术的开发通过在研究和开发工作中的常规使用单克隆抗体(MAB)来彻底改变了免疫学领域,从而导致了他们今天在诊所的成功应用。尽管需要重组良好的制造实践生产技术来生产临床级别的mAB,但学术实验室和生物技术公司仍然依靠原始的杂交瘤系列来稳定而轻松地以适度的价格生产高抗体产量。在我们自己的工作中,我们在使用杂交瘤衍生的mAB时面临着一个主要问题:无法控制产生的抗体形式,这是重组产生确实允许的灵活性。我们着手通过直接在杂交瘤细胞的免疫球蛋白(IG)基因座中的基因工程抗体来消除这一障碍。我们使用了簇状的定期间隔短的短膜重复序列(CRISPR)/CRISPR相关蛋白9(CAS9)和同源指导修复(HDR)来修改抗体的格式[mAb或抗原结合片段(FAB')]和同型。本协议在几乎没有动手的时间内描述了一种直接的方法,导致稳定的细胞系分泌高水平的工程抗体。亲本杂交瘤细胞保持在培养中,并用针对IG基因座感兴趣的指导RNA(GRNA)转染了IG基因座和HDR模板,以敲击所需的插入物和抗生素耐药性基因。通过施加抗生素压力,在遗传和蛋白质水平上扩展并表征抗性克隆,以产生改良的mAb而不是亲本蛋白。最后,修饰的抗体在功能测定中的表征。To demonstrate the versatility of our strategy, we illustrate this protocol with examples where we have (i) exchanged the constant heavy region of the antibody, creating chimeric mAb of a novel isotype, (ii) truncated the antibody to create an antigenic peptide-fused Fab' fragment to produce a dendritic cell–targeted vaccine, and (iii) modified both the constant heavy (CH)1 domain of the heavy chain (HC)和恒定的Kappa(Cκ)轻链(LC)引入位点选择性修饰标签,以进一步衍生纯化的蛋白质。仅需要标准的实验室设备,这有助于其在各种实验室中的应用。我们希望该协议能够进一步传播我们的技术并帮助其他研究人员。
1医学物理系,IRCCS Azienda Ospedaliero-Universitaria di Bologna,意大利博洛尼亚; 2纽约纽约的纪念斯隆·凯特林癌症中心医学物理部; 3威斯康星大学 - 威斯康星州麦迪逊分校放射学系; 4马里兰州格伦·伯尼(Glen Burnie)核医学研究所; 5澳大利亚新南威尔士州瓦格·瓦格(Wagga Wagga)查尔斯·斯特特大学(Charles Sturt University)牙科与健康科学学院; 6康涅狄格州纽黑文市耶鲁大学医学院放射学和生物医学成像系; 7密苏里州圣路易斯的华盛顿大学生物医学工程和Mallinckrodt放射学院; 8拉脱维亚拉脱维亚大学临床与预防医学研究所; 9纽约纽约的纪念斯隆·凯特林癌症中心放射学系;纽约纽约市威尔·康奈尔医学院放射学系10; 11加利福尼亚州戴维斯戴维斯分校生物医学工程系;瑞士伯尔尼大学核医学系12; 13加拿大不列颠哥伦比亚大学不列颠哥伦比亚大学放射学系; 14放射学和放射科学系,约翰·霍普金斯医学院,马里兰州巴尔的摩; 15瑞士日内瓦日内瓦大学医院核医学和分子成像司; 16荷兰格罗宁根大学医学中心格罗宁根大学核医学与分子成像系; 17加拿大不列颠哥伦比亚省的不列颠哥伦比亚大学放射与物理学系;和18 United Theranostics,贝塞斯达,马里兰州
Corresponding Author: Bess Tiesnamurti E-mail : bess002@brin.go.id Received: 19-04-2024, Accepted: 28-08-2024, Published: 15-01-2025 Co-authors: YNA: yenn012@brin.go.id, PWP: peni005@brin.go.id, MNA: moza001@brin.go.id, YW:raye001@brin.go.id,dp:dick013@brin.go.id,mm:mari052@brin.go.id.id,nhk:noor021@brin.go.id,ra:risa003@brin.go.id.id, mnas001@brin.go.id,wn:wind006@brin.go.id,esr:enis007@brin.go.id.id,ff:firs001@brin.go.id,wts:wahi003@brin.go.id whahi.go.id如何引用: Mariyono M,Krishna NH,Antari R,Setiasih S,Tiesnamurti B,Rofiq MN,Negara W,Rohaeni ES,Firsoni F和Sasongko WT(2025)比较Bali,Madura,Madura,Madura,Maderred Crossbred Caltred cottry cottery Worldiary Worldiary of Worldinary:3(39),3(2025年),3.2(2)18(2)。
先驱制定了《玉米杂交 - 黑肽管理指南》,以帮助我们的客户尽最大的能力管理我们的产品。分配了四个可能的评分之一:足够的容忍度,需要仔细管理,作物响应警告或数据不足。评级基于复制的研究试验和现场观察结果。在某些环境条件下,任何产品都可能受到任何除草剂的伤害。本指南可以协助选择和管理除草剂计划。它基于复制的研究试验和现场观察。请参阅您的先驱销售专业人员或除草剂代表,内容涉及需要仔细管理的除草剂家庭。以下图表中未列出的任何除草剂家族都表明先驱没有依赖除草剂相互作用的杂种证据。始终阅读并遵循所有标签说明和预防措施。先驱对本指南中的除草剂作物反应信息没有任何保证。
摘要:植物混合杀伤力是指父母正常的现象,但是它们的杂种后代表现出异常发育甚至死亡,并且被归类为一种生殖隔离的杂种后形式。生殖隔离在物种形成和维持物种完整性中起着至关重要的作用,但也可能阻碍高质量种质资源的发展。克隆混合杀伤力基因并分析其功能有助于丰富我们对物种进化和形成机理的理解。本文在细胞,遗传和分子水平的植物杂交杀伤力方面的研究进展进行了全面概述,探讨了杂交致死性的分子机制,加深了我们对这种现象的理解,并为未来相关研究提供了一些参考。
Mourad Latoui,Hakima Chenafa Aityoucef,Fatiha Benghanem,Vincent Dorcet,Riadh Bourzami。新的有机无机杂化离子材料Tris(三聚磷酸二氢 - 磷酸二氢四氢基水平):合成,单晶结构,赫希菲尔德表面分析,光谱表征和热行为。分子结构杂志,2024,1300,pp.137312。10.1016/j.molstruc.2023.137312。hal-04356015