为了初步了解马拉维的山羊血吸虫病及其人畜共患潜力,我们进行了一项分子流行病学调查,在三个地区采集了山羊样本(n = 230),并使用粪便毛蚴孵化试验。后来对毛蚴进行分子基因分型表明,恩桑杰区(n = 30)的马氏血吸虫患病率为 0.0%,奇克瓦瓦区(n = 30)的患病率为 16.7%,曼戈切区(n = 170)的患病率为 25.3%。值得注意的是,在奇克瓦瓦的一只山羊身上发现了埃及血吸虫的毛蚴。对曼戈切区两家当地屠宰场的胴体(n = 51)进行检查后,未发现任何山羊血吸虫病的证据,只有曼戈切 3 的一个羊群受到感染。在这里,尽管对附近的几个其他牧群进行了采样,但患病率仍高达 87.7 % (n = 49),其中一只动物每 5 克粪便中排出 1000 个毛蚴。在这里,我们的吡喹酮治疗(n = 14)和 GPS 动物追踪(n = 2)试点子研究对三个月内的两个当地山羊牧群进行了比较。记录了 10 平方公里区域内的每日觅食范围,并在当地淡水中间蜗牛宿主内进行有针对性的血吸虫监测。GPS 数据分析显示,只有一个牧群(受感染)每天定期接触马拉维湖的水,而另一个牧群(未感染)完全避开湖泊。以 40 mg/kg 的剂量施用吡喹酮治疗一周后,驱虫治愈率为 92.3 %,而三个月后,大约三分之一的接受治疗的动物脱落血吸虫毛蚴。对当地捕获的几种田间蜗牛尾蚴进行了基因分型,包括发现了埃及血吸虫 - 马特氏血吸虫杂交种。我们的研究结果揭示了山羊血吸虫病的局灶性,为埃及血吸虫传播发出了新的警报,并强调了人畜共患传播可能很严重的地区。为了更好地解决马特氏血吸虫(和/或埃及血吸虫)的人畜共患溢出效应,国家血吸虫病控制计划应正式制定针对山羊血吸虫病的有针对性的监测,并在适当的情况下,在未来尝试综合的“同一个健康”干预措施。
经 EAZA 理事会批准 2024 年 10 月 11 日 简介 本立场声明表达了欧洲动物园和水族馆协会 (EAZA) 对使用冷冻保存材料和生物技术进行种群管理、繁殖、物种保护和其他潜在目的的看法。生物技术的使用还扩展到在分子和细胞水平上操纵生物系统、生物体或其衍生物。冷冻保存材料和相关生物技术可应用于保护工作,以改善遗传多样性并增强物种种群的可持续性。考虑到生物多样性面临的威胁日益增加以及物种灭绝的速度加快,EAZA 认识到冷冻保存材料和生物技术作为物种保护工作的宝贵工具的潜力。本立场声明概述了我们对使用冷冻保存材料和生物技术进行物种保护的立场,强调了它的优点和潜在缺点,以及当前和未来应用的关键考虑因素。 EAZA 立场 EAZA 支持冷冻保存以及随后使用冷冻保存材料作为维护生物多样性和确保物种生存的保护工具。所涉及的技术和方法正在迅速发展,为补充传统的离地保护管理和推进保护研究提供了令人兴奋的新可能性。冷冻保存的生殖细胞或体细胞与辅助生殖技术相结合,为物种保护和离地种群管理提供了有希望的额外机会。然而,EAZA 也认识到应该开展更多针对物种或分类单元的研究,以进一步开发方法和技术,如人工授精、体外受精、卵母细胞检索和保存以及使用冷冻保存材料的细胞系开发,以推进生物多样性保护和现存物种的保护管理。因此,EAZA 也支持在种群管理和物种保护中负责任地、以保护为目的使用生物技术,同时强调需要提高对其应用的复杂伦理问题和担忧的认识。 EAZA 认为,保护和恢复濒临灭绝的现存物种的努力不应受到阻碍或阻碍,不应使用有限的保护资源来拯救事实上已经灭绝的物种或恢复早已消失的物种,也不应在现存物种和灭绝物种之间创造杂交种。在我们完全理解并能够充分解决现存物种的保护需求之前,资源、时间和专业知识应该用于解决生物多样性保护的当前挑战。EAZA 不认可使用动物园和水族馆饲养的生物,或由此获得的样本,以协助灭绝物种的恢复工作,EAZA 也不支持保存或展示生物
执行摘要 尼日利亚是非洲最大的经济体和主要石油生产国,目前人口超过 2.12 亿。根据尼日利亚国家统计局的数据,2021 年第二季度尼日利亚的国内生产总值 (GDP) 同比增长 5%。继 2020 年第二季度和第三季度出现负增长率之后,5%(1.81 万亿美元)的增幅标志着该国连续三个季度增长。尼日利亚依靠进口来满足其食品和农产品需求(主要是小麦、大米、家禽、鱼类、食品服务、面向消费者的食品等)——每年价值约 100 亿美元。欧洲、亚洲、美国、南美洲和南非是农业进口的主要来源。农业部门不太发达;它约占 GDP 的 23%,雇用了约 35% 的人口。几十年来,历届政府都出台政策推动尼日利亚农业发展,但该国仍然是食品和农产品的净进口国。基础设施缺乏、缺乏有效的政策制定和实施、不安全因素以及气候变化的负面影响继续阻碍尼日利亚的农业增长。气候变化影响着该国北部各州的农作物产量。尼日利亚的农业极易受到气候变化以及随之而来的气温升高、长期干旱、洪水和其他条件的影响。生物技术为提高农业生产力和保护粮食作物免受高温、洪水和干旱等气候变化的影响提供了新工具。2001 年,尼日利亚成立了国家生物技术发展局(NABDA),以推广、商业化和监管生物技术产品。该国还签署了生物安全法案,成立了国家生物安全管理局 (NBMA),该机构于 2015 年从 NABDA 接管了生物技术监管权。NBMA 是尼日利亚生物安全的协调中心和权威机构,负责监督生物技术的使用并规范生物技术产品的商业化。然而,该法律严重依赖预防性方法,要求所有生物技术产品的进口都必须经过认证和强制标签。目前,政府正在推进和商业化农业生物技术,作为实现该国粮食安全的工具。尼日利亚于 2018 年正式批准其首种生物技术作物苏云金芽孢杆菌 (Bt) 棉花进行商业化。接下来,尼日利亚于 2019 年 1 月批准了抗豇豆豇豆 (PBR 豇豆;AAT709A) 的商业化。2020 年底,NBMA 批准了基因编辑指南。 2020 年 10 月 8 日,尼日利亚国家农业管理局批准种植 TELA 玉米(耐旱抗虫)。该许可证颁发给了尼日利亚农业研究所 (IAR)。随着这一品种的发布,IAR 被允许进行多地点试验,以评估 TELA 杂交种的产量和适应性。IAR 将寻求国家品种发布委员会的另一项批准,然后才能在 2023 年作物季节开始时将这些种子商业化提供给农民种植。有各种因素可能会限制尼日利亚生物技术的商业化。尼日利亚的 NBMA 法案要求对含有超过 4% 的转基因 (GE) 产品或成分的产品进行强制性标记。此外,民间社会团体正在加强反转基因运动。然而,反转基因信息并没有引起农民的共鸣,他们通常对生物技术持积极态度。如果实施有效的风险沟通策略来消除围绕基因工程的误解,情况可能会更好。稳健的风险
1.Patil G 、Patel R、Jaat R、Pattanayak A、Jain P、Srinivasan R. (2009) 谷氨酰胺改善鹰嘴豆 (Cicer arietinum L.) 芽形态发生 Acta Physiologiae Plantarum 。1;31(5):1077-84。2.Patil G 、Deokar A、Jain PK、Thengane RJ 和 Srinivasan R (2009) 开发基于磷酸甘露糖异构酶的农杆菌介导鹰嘴豆 (Cicer arietinum L.) 转化系统 Plant Cell Reports , 28 (11), pp.1669-1676。3.Patil G, Nicander B (2013) 在小立碗藓中鉴定出 tRNA 异戊烯基转移酶家族的另外两个成员。植物分子生物学。1;82(4- 5):417-26。4.Deshmukh R, Sonah H, Patil G , Chen W, Prince S, Mutava R, Vuong T, Valliyodan B 和 Nguyen HT (2014) 整合组学方法,提高大豆对非生物胁迫的耐受性。植物科学前沿,5,第 244 页。5.Patil G、Valliyodan B、Deshmukh R、Prince S、Nicander B、Zhao M、Sonah H、Song L、Lin L、Chaudhary J、Liu Y、Nguyen H (2015) 大豆 (Glycine max) SWEET 基因家族:通过比较基因组学、转录组分析和全基因组重测序分析获得的见解。BMC Genomics,16 (1),第 520 页。6.Chen W, He S, Liu D, Patil GB , Zhai H, Wang F, Stephenson TJ, Wang Y, Wang B, Valliyodan B 和 Nguyen HT (2015) 甘薯香叶基香叶基焦磷酸合酶基因 IbGGPS 可增加拟南芥的类胡萝卜素含量并增强其渗透胁迫耐受性。PLoS One , 10 (9) 7.Prince SJ, Joshi T, Mutava RN, Syed N, Vitor, M, Patil G, Song L, Wang J, Lin L, Chen W, Shannon JG, Nguyen H (2015) 大豆品系抗旱转录组的比较分析,以对比冠层萎蔫。植物科学,240,第 65-78 页。8.Chaudhary、Patil GB、Sonah H、Deshmukh RK、Vuong TD、Valliyodan B 和 Nguyen HT (2015) 扩大组学资源以改善大豆种子组成性状。植物科学前沿,6,第 1021 页。9.Syed N、Prince S、Mutava R、Patil G*、Li S、Chen W、Babu V、Joshi T、Khan S 和 Nguyen H,(2015) 核心时钟、SUB1 和 ABAR 基因通过大豆中的可变剪接介导洪水和干旱反应。《实验植物学杂志》,66 (22),第 7129-7149 页。10.Prince SJ、Song L、Qiu D、dos Santos J、Chai C、Joshi T、Patil G、Valliyodan B、Vuong TD、Murphy M 和 Krampis K (2015) 大豆种质中根结构相关基因的遗传变异,是改良栽培大豆的潜在资源。11.12.BMC 基因组学,16 (1),第 132 页。Sonah H、Chavan S、Katara J、Chaudhary J、Kadam S、Patil G 和 Deshmukh R (2016) 谷物中木聚糖酶抑制蛋白 (XIP) 基因的全基因组鉴定和表征。Indian J. Genet。Plant Breed,76,第 159-166 页。Asekova S、Kulkarni K、Patil G、Kim M、Song J、Nguyen HT、Shannon J 和 Lee J (2016) 野生 (G. soja) 和栽培 (G. max) 大豆杂交种芽鲜重的遗传分析。Molecular Breeding,36 (7),第 103 页。13.Song L, Nguyen N, Deshmukh R, Patil GB , Prince S, Valliyodan B, Mutava R, Pike S, Gassmann W 和 Nguyen H, (2016) 大豆 TIP 基因家族分析和
锌和硼对花生生长和养分吸收的影响 DOI:10.9734/CJAST/2020/v39i130475 (1) Rosana Halinski de Oliveira,巴西南里奥格兰德州天主教大学。(2) Ganyo Komla Kyky,多哥农业研究所 (ITRA)。完整同行评审历史记录:http://www.sdiarticle4.com/review-history/54269 芦荟 (Aloe barbadensis Miller) 黑斑病的病因、症状及通过植物药和生物防治剂进行管理——简要回顾 DOI:10.9734/CJAST/2020/v39i130476 (1) Faizan Ahmed Sheikh,印度阿尼大学。 (2) PWHKP Daulagala,斯里兰卡开放大学,斯里兰卡。完整的同行评审历史记录:http://www.sdiarticle4.com/review-history/54086 对改善移动网络流量质量的贡献 DOI:10.9734/CJAST/2020/v39i130477 (1) Zlatin Zlatev,保加利亚特拉基亚大学。(2) 孟伟英,沈阳建筑大学,中国。(3) Aliyu Bhar Kisabo,尼日利亚。完整的同行评审历史记录:http://www.sdiarticle4.com/review-history/54276 交通组织方案自动生成系统 DOI:10.9734/CJAST/2020/v39i130478 (1) Elżbieta Macioszek,波兰西里西亚理工大学。(2) Nain Tara,巴基斯坦阿迦汗大学医院。完整的同行评审历史记录:http://www.sdiarticle4.com/review-history/54255 叶面施肥硼、锌和铁对桃品种 Shan-e-Punjab 果实品质和叶片养分含量的影响 DOI:10.9734/CJAST/2020/v39i130479 (1) Georgiana Eurides de Carvalho Marques,巴西马拉尼昂州联邦教育、科学和技术学院。 (2) Rahul Datta,捷克共和国孟德尔大学。完整的同行评审历史记录:http://www.sdiarticle4.com/review-history/51260 使用 Eberhart 和 Russel 模型对玉米(Zea mays L.)杂交种的产量及其归因性状进行稳定性分析 DOI:10.9734/CJAST/2020/v39i130480 (1) Joseph Adjebeng-Danquah,加纳 CSIR-Savanna 农业研究所。(2) Kouame Konan,科特迪瓦科霍戈大学。完整的同行评审历史记录:http://www.sdiarticle4.com/review-history/53703 盐度对 Puccinellia ciliata(禾本科)改良种群生长和一些光合色素的影响 DOI:10.9734/CJAST/2020/v39i130481 (1) Ali Raza,中国农业科学院。 (2) Ana Maria Arambarri,阿根廷拉普拉塔国立大学。 (3) Luiz Leonardo,巴西帕拉伊巴州立大学。完整的同行评审历史:http://www.sdiarticle4.com/review-history/54317 水稻 (Oryza sativa L.) 厌氧发芽性状的遗传分化研究 DOI:10.9734/CJAST/2020/v39i130482 (1) Sawadogo Boureima,布基纳法索法达恩古尔马大学。 (2) Luiz Leonardo,巴西帕拉伊巴州立大学。 完整的同行评审历史:http://www.sdiarticle4.com/review-history/54411 Balanites aegyptiaca 的植物化学成分和抗氧化活性,Securidaca longepedunculata 和 Acacia gourmaensis 在布基纳法索用于防治种子传播真菌 DOI:10.9734/CJAST/2020/v39i130483 (1) Karen Cordovil,巴西菲奥克鲁斯。(2) Panchumarthy Ravi Sankar,印度维尼昂药学院。完整同行评审历史记录:http://www.sdiarticle4.com/review-history/54710 通往大市场的窄路:皮尔胡瓦(UP)传统印花手工织布业概览 DOI:10.9734/CJAST/2020/v39i130484 (1) Mamatha Hegde,印度拉迈亚应用科学大学。(2) Rita Kant,印度旁遮普大学。(3) Shaik Khateeja Sulthana,印度。完整的同行评审历史记录:http://www.sdiarticle4.com/review-history/54097 筛选高产且抗绿豆黄花叶病毒 (MYMV) 的乌尔豆种质 DOI: 10.9734/CJAST/2020/v39i130485 (1) Clint Magill,美国德克萨斯 A&M 大学。(2) Lucie Aba Toumnou,中非共和国班吉大学。完整的同行评审历史记录:http://www.sdiarticle4.com/review-history/54510 政府部门就业女性在赋权方面所面临的制约因素 DOI: 10.9734/CJAST/2020/v39i130486 (1) Anju Bharti,印度 Guru Gobind Singh Indraprastha 大学。 (2) L. Dilakshini Stanislaus,斯里兰卡东方大学。完整同行评审历史记录:http://www.sdiarticle4.com/review-history/54857 灌溉和干旱胁迫条件下水稻 (Oryza sativa L.) 遗传多样性评估 DOI:10.9734/CJAST/2020/v39i130487 (1) Frédéric Ngezahayo,布隆迪布琼布拉高等师范学院。(2) Hussin Jose Hejase,黎巴嫩 Al Maaref 大学。(3) Pham Thi Thu Ha,越南 Ton Duc Thang 大学。完整同行评审历史记录:http://www.sdiarticle4.com/review-history/54685完整的同行评审历史记录:http://www.sdiarticle4.com/review-history/54857 灌溉和干旱胁迫条件下水稻 (Oryza sativa L.) 遗传多样性评估 DOI:10.9734/CJAST/2020/v39i130487 (1) Frédéric Ngezahayo,布隆迪布琼布拉高等师范学院。(2) Hussin Jose Hejase,黎巴嫩 Al Maaref 大学。(3) Pham Thi Thu Ha,越南 Ton Duc Thang 大学。完整的同行评审历史记录:http://www.sdiarticle4.com/review-history/54685完整的同行评审历史记录:http://www.sdiarticle4.com/review-history/54857 灌溉和干旱胁迫条件下水稻 (Oryza sativa L.) 遗传多样性评估 DOI:10.9734/CJAST/2020/v39i130487 (1) Frédéric Ngezahayo,布隆迪布琼布拉高等师范学院。(2) Hussin Jose Hejase,黎巴嫩 Al Maaref 大学。(3) Pham Thi Thu Ha,越南 Ton Duc Thang 大学。完整的同行评审历史记录:http://www.sdiarticle4.com/review-history/54685