石墨烯及其衍生物是具有二维六边形结构的突破性材料,具有出色的电导率、强度和柔韧性。它们的多功能性和化学可改性性使其可用于电子、储能、传感器、生物医学等领域。正在进行的研究凸显了它们在推动技术和解决全球挑战方面的潜力 [1]。在这种结构中,粒子的行为类似于狄拉克无质量费米子,从而产生许多合适的电特性,使石墨烯成为设计和制造未来纳米电子元件的合适候选材料 [2-4]。因此,近年来,科学家扩大了在二维材料领域的研究,这些研究成果导致了新二维材料的诞生 [5,6]。二维材料的一个值得注意的点是,可以通过应用吸收、杂质污染、产生缺陷或应用其他物理特性等变化来改变其特性 [7-11]。最重要的和
该体系结构还指定了几个参考点。RP-AN-1,RP-AN-2,RP-AN-3和RP-AN-6是KB子系统和底层网络之间的参考点,动态适应子系统,自治引擎,E2E网络编排和编排器,以启用这些子系统的KB访问KB。RP-AN-4是自主引擎和动态适应子系统之间的,可为动态适应子系统提供进化探索和实验功能。RP-AN-5位于动态适应子系统和底层网络之间,随着底层网络条件在运行时的变化,将控制器的选择和集成到底层网络。RP-AN-7,RP-AN-8和RP-AN-11是AN编排者和KB之间的参考点,分别是自主引擎和动态适应子系统,以使An Orking Trator能够管理AN和AN和LISECYCLE中的工作流程和流程。RP-AN-9,RP-AN-10,RP-AN-12是E2E网络乐团和编排者,自治引擎和动态适应子系统之间的参考点,由E2E网络编排器使用,这些系统用于管理和机弦乐网络实体。RP-AN-13是E2E网络编排和底层网络之间的参考点,用于管理和编排底层网络中的控制网络实体。
Google DeepMind科学家哈萨比斯(Demis hassabis)和强普(John M. Jumper)以ai预测蛋白质结构技术
摘要:透明导电材料 (TCM) 已广泛应用于触摸屏、平板显示器和薄膜太阳能电池等光电应用。TCM 的这些应用目前以 n 型掺杂氧化物为主。由于空穴迁移率低或 p 型掺杂瓶颈,高性能 p 型 TCM 仍然缺乏,这阻碍了高效的器件设计和透明电子等新应用。在这里,基于第一性原理计算,我们提出硫族化物钙钛矿 YScS 3 作为一种有前途的 p 型 TCM。根据我们的计算,它的光吸收起始点高于 3 eV,这使得它对可见光透明。它的空穴电导率有效质量为 0.48 m 0 ,是 p 型 TCM 中最小的之一,表明空穴迁移率增强。它可以通过阳离子位点上的 II 族元素掺杂为 p 型,所有这些都会产生浅受体。结合这些特性,YScS 3 有望提高 p 型 TCM 相对于 n 型 TCM 的性能。
摘要TGA-EGA技术用于研究磺基酸(SA)对由甲基丙烯酰胺,divinylbenzene和Trimethoxyvinylane组成的杂化型特里群前体的碳化过程的影响。在N 2大气下,原始聚合物用SA的饱和溶液在600°C下浸渍。原始混合聚合物和所得碳的特征性能均基于FTIR,Raman和PXRD分析,该分析表明材料是由硅/硅酸盐无序网络互穿的非晶聚合物或碳相组成的。孔隙法分析表明,与原始前体相比,所得的碳具有均匀的超级气孔,平均孔隙宽度为0.7 nm,中孔数量减少。从TGA结果中,遵循浸渍的聚合物在两个阶段分解的浸渍,而不是像原始前体那样。此外,浸渍聚合物的IDT减少了约100°C,其T最大增加了2-5.5°C。他们的分解速度较慢22-37%,这导致该过程的效率提高了10-48%。EGA显示出浸渍前体的分解位置是从酰胺基团的降解开始的,然后发生了SA破坏,然后进一步分解了聚合物。研究得出的结论是,SA对碳化聚合物的表面具有保护作用。在浸渍和热处理期间,SA在前体的毛孔中产生沉积物。这导致孔宽度缩小,延迟和减慢聚合物热分解过程,并提高其效率。
