摘要 — 我们通过蒙特卡罗模拟、特性良好的静态随机存取存储器 (SRAM) 和射电光致发光 (RPL) 剂量计研究了 CERN 中子飞行时间 (n_TOF) 设施 NEAR 站的中子场,目的是为电子辐照提供中子。模拟了 NEAR 几个测试位置的电子测试相关粒子通量和典型量,并将其与 CERN 高能加速器混合场设施 (CHARM) 的粒子通量和典型量进行比较,突出了相似点和不同点。在参考位置测试了基于单粒子翻转 (SEU) 和单粒子闩锁 (SEL) 计数的 SRAM 探测器(每个探测器具有不同的能量响应)和 RPL 剂量计,并将结果与 FLUKA 模拟进行了对比。最后,将 NEAR 的中子谱与最著名的散裂源和典型的感兴趣环境(用于加速器和大气应用)的中子谱进行比较,显示了该设施用于电子辐照的潜力。
摘要 — 本文介绍了一种基于扰动双模基片集成波导 (SIW) 腔的紧凑型新型宽阻带带通滤波器 (BPF)。在 SIW 腔体中心引入扰动金属通孔,通过将 TE 101 模式的谐振频率移向 TE 201 模式来实现双模 SIW 腔体。此外,通过将外部端口设置为高阶杂散模式的电场零点位置,可以实现宽阻带 BPF。通过抑制至少包含七种模式的不需要的模式,可以在单个 SIW 腔体中获得最宽的阻带,最宽的阻带可达 2 f 0。为了验证所提出的宽阻带滤波器,设计、制造并测量了两个原型,阻带为 2 f 0,抑制水平分别优于 20dB 和 30dB。
QuickSyn Lite mmW 合成器模块使用安装在标准 20 GHz QuickSyn Lite 顶部的频率倍增器模块,将频率范围扩展到 mmW 频率。新模块由 Quickyn Lite 基座供电和控制,使用户可以轻松集成和控制。与所有 Quicksyn 合成器一样,这些新的 mmW 源包括串行 SPI 和 USB 控制接口,只需将它们连接到 PC 和直流电源即可立即部署。软前面板允许用户访问频率控制和频率扫描以及 32K 点 LIST 模式设置。此外,嵌入式固件允许将这些模块用作集成自动测试解决方案的一部分。我们已采取措施尽量减少次谐波和杂散。除了在频率转换器应用中用作本地振荡器外,QuickSyn Lite mmW 模块还可以
胞嘧啶和5-甲基胞嘧啶的水解脱氨基驱动许多在人类癌症中观察到的过渡突变。脱氨基诱导的诱变中间体包括尿嘧啶或胸腺素加合物误导了鸟嘌呤。虽然存在多种方法来测量其他类型的DNA加合物,但胞质脱氨基加合物却带来了异常的分析问题,并且尚未开发出足够的测量方法。我们在这里描述了一种新型的杂化胸腺素DNA糖基化酶(TDG),该糖基化酶(TDG)由与胸腺糖基化酶在古细菌中发现的29个氨基酸序列组成,该序列是与胸腺素糖基化酶的催化结构域相关的29-氨基酸序列。使用定义的序列寡核苷酸,我们表明杂交TDG具有强大的失误选择性活动,以对脱氨酸u:g和t:g mistairs。我们进一步开发了一种将糖基酶释放的游离碱与oli-Gonucleotides和DNA分离的方法,然后是GC - MS/MS定量。使用这种方法,我们在第一次测量了尿嘧啶,u:g和t:g对的水平。此处介绍的方法将允许测量一类具有生物学上重要的脱氨酸胞嘧啶加合物类别的结构,持久性和修复。
摘要。食物浪费是一个重大的全球问题,导致土壤污染和温室气体排放。已经探索了解决此问题并减少对化学肥料的依赖,使用有效的微生物(EM)和脱水技术堆肥。这项研究旨在使用与脱水相关的食物浪费在不同阶段全面研究堆肥过程。细菌和真菌菌落是在两个系统中堆肥的早期,早期和成熟阶段测量的。结果表明细菌和真菌种群的趋势不同,中嗜性细菌主导了早期阶段,而在成熟阶段,系统2的嗜热细菌增加。真菌菌落数量随时间的降低。相关性分析表明,嗜嗜性细菌与真菌与pH和温度之间存在负相关性,而系统2中的嗜热细菌和真菌则显示出正相关。脱水的食物废物可增强细菌和真菌的生长,从而在特定的pH和温度条件下促进有效的堆肥。这些发现突出了在可持续废物管理实践中使用脱水食品浪费和EM的潜力,
摘要 - 由于技术的快速发展和开发,电子系统设计中的微型化已变得不可避免。由于较小的传热表面,热通量密度大大增加了热通量密度,因此对热管理能力提出了挑战。电子冷却中采用纳米流体似乎是实现更好的热量耗散的另一种方法。这项研究探讨了三元杂化纳米流体的可行性:Al 2 O 3:Sio 2在水中浓度不同的水中和混合物比例的水中,在蛇形冷却板中。在这项研究中,研究了0.01%的GO + Al 2 O 3:SIO 2,0.006%GO + Al 2 O 3:SiO 2和0.008%GO + Al 2 O 3:SIO 2的混合比为10:90和20:80(Al 2 O 3:Sio 2)。结果表明,与基础流体相比,纳米流体的0.01%GO + Al 2 O 3:SIO 2(10:90)纳米流体显示出最高增强的传热系数,高1.1倍。随后是0.008%GO + Al 2 O 3:SIO 2(10:90)和0.006%GO + Al 2 O 3:SIO 2(10:90),与基础流体相比,连续增强了1.03次和0.87倍的热传递系数增强。在混合比率的期限内,以10:90(Al 2 O 3:Sio 2)的表现高于20:80。为了评估采用的可行性,进行了优势比(AR)来测量热传递增强和压降效应。AR分析表明,在较低的雷诺,RE数字区域,0.01%GO + Al 2 O 3:SIO 2(10:90)三元杂交纳米流体被证明是最可行的,这是最可行的,这是由于热传递增强的压力较高。
。CC-BY-NC-ND 4.0 国际许可,根据未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2023 年 4 月 8 日发布。;https://doi.org/10.1101/2023.04.08.535096 doi:bioRxiv 预印本
1 医院大学癌症研究中心(CUCC)肿瘤科“Dr. José Eleuterio Gonz 是一名女同性恋者”,纽约大学,Av.弗朗西斯科·I·马德罗和大道Gonzalitos s/n,Mitras Centro,蒙特雷 64460,墨西哥; orlando.solisc@gmail.com (操作系统-客户端); hazyadee@gmail.com(HFR-G.); juanfglz@hotmail.com(J.F.G.-G.); ferchoalcorta9@gmail.com(F.A.-N.); dianics83@gmail.com (DCP-I.); vidal_oscar@hotmail.com (OV-G.) 2 纽约大学生物系,Av. Pedro de Alba s/n,Universitaria Ciudad,圣尼古拉斯德洛斯加尔萨,蒙特雷 66450,墨西哥; monicavv2@gmail.com(MPV-V.); karencamarillo01@gmail.com (KPC-C.) 3 纽约大学充实学院,Av.博士José Eleuterio Gonz 拥有 1500 cc,Mitras Centro,蒙特雷 64460,墨西哥; ricardocerda_mx@yahoo.com.mx 4 德克萨斯大学里奥格兰德河谷分校分子科学系,麦卡伦,TX 78502,美国; genaro.ramirezcorrea@utrgv.edu 5 约翰霍普金斯大学医学院儿科系、心脏病学系,美国马里兰州巴尔的摩 21205 * 通讯地址:maria.garzarg@uanl.edu.mx;电话:+52-818-333-8111
4个集中批评方法16 4.1预赛。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 4.2基本的集中评论家方法。。。。。。。。。。。。。。。。。。。。。。。。。。17 4.3 Maddpg。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 4.4昏迷。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 4.5 Mappo。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 4.6基于州的批评家。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 4.7选择不同类型的分散和集中批评家。。。。。。。。。。24 4.8结合策略梯度和价值分解的方法。。。。。。。。。。。。25 4.9其他集中批评方法。。。。。。。。。。。。。。。。。。。。。。。。。。。25