和飞行工程师。为了帮助解决这种情况,所有油尺上都刻有交叉影线图案,以使结果更容易读取。我们在螺旋桨上进行的测试表明它们更容易读取。图 2 显示了新设计。强调了这一点的重要性。即使在温暖的日子里,油位在仅仅 45 分钟后就下降了 1/2 英寸。因此,如果一名技术人员在 �������������� �������� �������� ���� �������� ��� ���������� 技术人员在 ������������ 关机 20 分钟后开始检查液位,并且需要 40 分钟来维修所有四个
与传统的空气冷却相比,矿物油效率的提高可能简化设施设计,并提供一种节省成本的方法。尽管矿物油浸没式冷却技术提高了冷却效率并节省了成本,但它仍未得到广泛应用,原始设备制造商不愿危及现有空气冷却系统设备的销售。仅有关于直接浸没式冷却热性能的令人信服的物理特性对于数据中心运营商来说是不够的。关于矿物油浸没式冷却对信息技术 (IT) 设备在组件和底盘级别可靠性的影响,仍存在许多不确定性和担忧。本文首次尝试通过回顾 IT 设备材料(如聚氯乙烯 (PVC)、印刷电路板 (PCB) 和电容器)的物理和化学性质的变化来应对这一挑战,并描述材料的互连可靠性。矿物油性质的变化(如运动粘度和介电强度)也被视为重要因素,并进行了简要讨论。本文展示了热塑性材料的弹性、硬度、膨胀和蠕变等机械性能的变化。还讨论了材料和矿物油之间的化学反应随时间和温度的变化。作者收集的有关该主题的文献和可量化数据为本研究文件提供了主要基础。[DOI:10.1115/1.4042979]
●通过检查人孔进入油脂陷阱的放电侧。●视觉检查放电T恤,并注意逃入下水道系统的油脂量。●视觉检查并记下储罐的表面和油脂层。●探测油脂层,并注意浮动雾的深度。●是否有必要将雾层视为更大或等于储罐体积的25%,则保证了由运输车泵出的泵。请记住,水箱底部将有一个污泥层,在决定抽水罐时也应考虑这一点。●无论条件如何,这都是最佳的管理实践,下水道使用规则和规定要求您每三个月抽出润滑脂拦截器储罐。●请记住,这些检查,抽水和维护不仅保护城镇的收集系统和抽水系统,还可以防止昂贵的备份到您的机构中。
记录编号:28.00.0000.040.25.001.23.422/1(13)日期:2/10/2023副本,以获取善良的信息和必要的措施(不按照资历顺序))达卡外交部高级秘书,达卡(要求提出动词,请求发出动词)。2)孟加拉国石油公司董事长,董事长办公室3)H.E大使,日本达卡大使馆,孟加拉国4)H.E大使,日本孟加拉国大使馆。5)达卡阿加冈移民和护照部长总干事。6)P.S授予Hon'ble总理,权力,能源和矿产资源事务的顾问。7) Managing Director, Padma Oil Company Limited 8) PS to Secretary, Energy and Mineral Resources Division 9) Mr.---------------------------------------------- 10) Progammer , Energy and Mineral Resources Division (with request to publish this G.O in EMRD website).11)达卡Hazrat Shahjalal国际机场主任。12)达卡Hazrat Shahjalal国际机场的移民官。13)办公室副本。
完整作者列表: Shah, Najam Ul Hassan;亚利桑那州立大学,物质、运输和能源工程学院;塔克西拉工程技术大学,机械工程系 Kong, Wilson;亚利桑那州立大学,物质、运输和能源工程学院 Casey, Nathan;亚利桑那州立大学,物质、运输和能源工程学院 Kanetkar, Shreyas;亚利桑那州立大学,物质、运输和能源工程学院 Wang, Robert;亚利桑那州立大学,物质、运输和能源工程学院 Rykaczewski, Konrad;亚利桑那州立大学,物质、运输和能源工程学院
目的:探讨桉叶油精柠檬蒎烯肠溶胶囊(QIENUO)治疗肺囊性纤维化(CPF)的作用机制,分析QIENUO与CPF的共同靶点,验证核心蛋白与小分子的分子对接。方法:从PubChem、SwissTargetprediction、GeneCards、PharmMapper、TCMSP数据库中获取主要活性化合物及其对应靶点,从GeneCards、OMIM、DisGeNET、TTD数据库中筛选与CPF相关的靶点。通过维生信网站利用基因本体论(GO)和京都基因与基因组百科全书(KEGG)对“QIENUO-CPF”共同靶点进行分析,利用Cytoscape构建蛋白质-蛋白质相互作用(PPI)网络和化合物-靶点-通路网络,并系统分析网络参数。采用分子对接方法评估并验证核心蛋白与单体成分之间的相互作用。结果:筛选出228个活性化合物靶点和1354个CPF相关靶点,对92个共同靶点进行GO和KEGG分析。结果显示,切诺对CPF的治疗作用主要通过AMPK信号通路、cGMP-PKG信号通路和TGF-β信号通路实现。分子对接结果显示,15对配体-受体对中,有9对的结合能低于-6kjmol-1。结论:切诺作为治疗肺囊性纤维化的药物具有巨大的潜力,研究和论证了切诺治疗CPF的具体分子机制和有效活性成分,为切诺更好的临床应用提供理论基础。关键词:网络药理学;分子对接;肺囊性纤维化;桉叶油素、柠檬烯、蒎烯肠溶胶囊
eceavuloğluyilmaz 1*,senol toprak 2,aybükeAfraafra afra afra afra ozone疗法是一种基于对疾病治疗的臭氧气体和不同医疗条件的治疗中的臭氧气体的替代形式,在某些研究中建议使用臭氧。在这项研究中,它的目的是通过用臭氧气体富集特级初榨橄榄油和蒸馏水来确定可能的抗癌活性,并确定其对结肠癌和正常结肠成纤维细胞细胞的细胞毒性作用。通过MTT分析对DLD1(结肠癌)和CCD-18CO(健康结肠成纤维细胞)细胞系确定臭氧富集的特级初榨橄榄油和蒸馏水对细胞活力的影响。在DLD-1细胞系中,臭氧蒸馏水和橄榄油在所有浓度下都降低了体外细胞活力,并且在较高浓度(5和10 ppm)下,这种降低最为明显。在CCD-18CO细胞系中,臭氧化的水和臭氧化的橄榄油在所有浓度下都增加了体外细胞活力,但是与对照相比,这种增加并不显着。这项研究的结果与文献中其他研究的结果一致。因此,臭氧治疗被认为在癌症治疗中有希望。关键字:臭氧,MTT分析,结肠癌,DLD1,CCD-18CO
80 戊-1-铵 ( m = 4),81 己-1-铵 ( m = 5),81 庚-1-铵 ( m = 6),82 辛-1-铵 ( m = 7),82 壬-1-铵 ( m = 8);82 癸-1-铵 ( m = 9),82, 83 十一-1-铵 ( m = 10);83 RP2,2-(甲硫基)乙胺 (MTEA);84 RP3,烯丙基铵 (ALA);85 RP4,丁-3-炔-1-铵 (BYA);86 RP5,2-氟乙基铵;87 RP6,异丁基铵 (iso-BA);88 RP7,4-丁酸铵 (GABA);89 RP8,5-戊酸铵 (5-AVA); 90 RP9,杂原子取代的烷基铵;91 RP10,环丙基铵;92, 93 RP11,环丁基铵;92, 93 RP12,环戊基铵;92, 93 RP13,环己基铵;92, 93 RP14,环己基甲基铵;94 RP15,2-(1-环己烯基)乙基铵;95, 96 RP16,(羧基)环己基甲基铵 (TRA);97 RP17,苯基三甲基铵 (PTA);98 RP18,苄基铵 (BZA);99-104 RP19,苯乙铵 (PEA);50, 100, 101, 105-108 RP20,丙基苯基铵 (PPA); 100, 101 RP21,4-甲基苄基铵;109 RP22,4-氟苯乙铵 (F-PEA);106, 110-113 RP23,2-(4-氯苯基) 乙铵 (Cl-PEA);111 RP24,2-(4-溴苯基) 乙铵 (Br-PEA);111 RP25,全氟苯乙铵 (F5-PEA);114 RP26,4-甲氧基苯乙铵 (MeO-PEA);112 RP27,2-(4-芪基)乙铵 (SA);115 RP28,2-(4-(3-氟)芪基)乙铵 (FSA); 115 RP29,2-噻吩基甲基铵 (ThMA);116 RP30,2-(2-噻吩基)乙铵;116 RP31,2-(4'-甲基-5'-(7-(3-甲基噻吩-2-基)苯并[c][1,2,5]噻二唑-4-基)-[2,2'-联噻吩]-5-基)乙-1-铵 (BTM);117 RP32,1-(2-萘基)甲铵 (NMA);118 RP33,2-(2-萘基)乙铵 (NEA);118 RP34,萘-O-乙铵;119 RP35,芘-O-乙铵;119 RP36,苝-O-乙铵; 119 RP37,3-碘吡啶(IPy);97 RP38,咔唑烷基铵(CA-C4)。120 DJ 相:DJ1,丙烷-1,3-二胺(PDA,m = 3);121 丁烷-1,4-二胺(BDA,m = 4);122-126 戊烷-1,5-二胺(m = 5);125 己烷-1,6-二胺(HDA,m = 6);124,125 庚烷-1,7-二胺(m = 7);125 辛烷-1,8-二胺(ODA,m = 8);124,125 壬烷-1,9-二胺(m = 9)125 癸烷-1,10-二胺(m = 10); 126 十二烷-1,12-二铵(m=12);126, 127 DJ2,N 1 -甲基乙烷-1,2-二铵(N-MEDA);128 DJ3,N 1 -甲基丙烷-1,3-二铵(N-MPDA);128 DJ4,2-(二甲氨基)乙基铵(DMEN);129 DJ5,3-(二甲氨基)-1-丙基铵(DMAPA);129 DJ6,4-(二甲氨基)丁基铵(DMABA);129 DJ7,质子化硫脲阳离子;130 DJ8,2,2′-二硫代二乙铵;91, 131 DJ9,2,2′-(亚乙基二氧基)双(乙基铵) (EDBE);132 DJ10,2-(2-
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供https://creativecommons.org/licenses/by-nc-nc-nd/4.0/