摘要:本研究重点是自动驾驶,自主车道变化领域的关键任务。自主车道变更在改善交通流量,减轻驾驶员负担和降低交通事故风险方面起着关键作用。然而,由于车道变化场景的复杂性和不确定性,自主巷变化的功能仍然面临着挑战。在这项研究中,我们使用深钢筋学习(DRL)和模型预测控制(MPC)进行了自主巷更换模拟。具体而言,我们使用参数化的软侵略者 - 批评(PASAC)算法来训练基于DRL的车道变化策略,以输出离散的车道更换决策和连续的纵向车辆加速度。我们还基于不同车道的最小预测汽车跟踪成本来选择车道选择。首次比较了在变化决策的背景下DRL和MPC的性能。模拟结果表明,在相同的奖励/成本功能和交通流下,MPC和PASAC的碰撞率为0%。PASAC在平均奖励/成本和车辆速度方面表现出与MPC相当的性能。
摘要:需要改善受试者的期望和生活质量,这些受试者受到禁用的病理影响,这些病理需要替换或再生组织或身体部分的再生,这加剧了能够整合并被身体组织耐受的创新性,绩效较高的材料的发展。具有这些特征的材料,即生物功能,生物安全性和生物相容性,被定义为生物材料。生产此类材料的众多方法之一是Sol -Gel技术。此过程主要用于在低温下,通过水解和多趋化反应在水醇溶液中制备陶瓷氧化物。这项研究基于特定类型的生物材料:有机 - 无机杂种。这项研究的目的是概述溶胶 - 凝胶技术的优势和缺点,并描述这些生物材料的制备,化学和生物学特征,使用以及未来的前景。尤其是,将植物药物用作混合材料的有机成分是该手稿的创新。植物提取物的生物学特性很多,因此,它们值得从科学界引起人们的极大关注。
Los Alamos国家实验室是一项平权行动/均等机会雇主,由Triad National Security,LLC经营,为美国能源部国家核安全管理局根据合同89233218CNA000001运营。通过批准本文,出版商认识到,美国政府保留了不判有限定的免版税许可,以出版或复制已发表的此捐款形式,或者允许其他人出于美国政府的目的。洛斯阿拉莫斯国家实验室要求出版商根据美国能源部主持的工作确定这篇文章。Los Alamos国家实验室强烈支持学术自由和研究人员发表权;但是,作为一个机构,实验室并未认可出版物的观点或保证其技术正确性。
摘要:本文介绍了一种针对语音情感的新型基于图形的学习技术,该技术已专门针对人形机器人内的能源有效部署而定制。我们的方法论代表了可扩展图表示的融合,该图表源于图形信号处理理论的基础原理。通过研究循环或线图的利用,作为塑造强大的图形卷积网络(GCN)构造的基本成分,我们提出了一种方法,可以允许捕获语音信号之间的关系以解码复杂的情感模式和反应。我们的方法与诸如IEMOCAP和MSP -IMPROV之类的既定数据库进行了验证和基准测试。我们的模型优于稳定的GCN和普遍的深度图体系结构,证明了与ART方法论状态相符的性能水平。值得注意的是,我们的模型在显着减少了可学习参数的数量的同时,实现了这一壮举,从而提高了计算效率并加强其对资源约束环境的适用性。这种提出的基于图形的杂种学习方法用于人形机器人内的多模式情绪识别。其提供竞争性能的能力,同时简化计算复杂性和能源效率,这代表了一种新颖的情绪识别系统的新方法,可以满足各种真实世界的应用,其中人类机器人中情绪识别的精确性是一个关键的必要条件。
免责声明本报告中提供的信息仅出于信息目的。美国国家,食品和农业组织,非洲孤儿农作物联盟和非洲联盟的洛克菲勒基金会,农业模型对比和改善项目,Havos.ai,美国国务院,食品和农业部,明显不承担任何损失,损害,索赔或其他责任,不承担任何损失,损害,索赔或其他责任。明确了解到,洛克菲勒基金会,农业模型对比和改进项目,Havos。AI,美国国务院,食品和农业部,非洲孤儿作物财团和非洲联盟,通过提供此信息,没有义务更新信息或向接收者提供其他支持。AI,美国国务院,食品和农业部,非洲孤儿作物财团和非洲联盟,通过提供此信息,没有义务更新信息或向接收者提供其他支持。
近年来,已经进行了许多尝试,以完全或部分从天然纤维作为可持续发展的一部分制成复合材料,与其他天然纤维(如亚麻,剑麻,竹子,竹子和香蕉叶)相比,其强度优于强度。玄武岩纤维是一种天然可用的矿物纤维之一,可以克服天然纤维机械强度低的问题。这项研究的目的是确定杂交对玄武岩纤维重量不同的玻璃纤维复合材料的影响。复合层压板是使用普通双向玻璃纤维的手篮法和带有环氧树脂作为热固性基质材料的平原双向玄武岩纤维制成的。玄武岩纤维的重量分数在不同层压板的开发过程中变化为0%,26%,54%,84%和100%,并使用ASTM标准研究了它们的密度和机械表征。进行了密度测试,以评估不同层压板的特定强度。评估不同纤维重量分数对复合,拉伸,弯曲和冲击测试的机械特性的影响。可以观察到,与非杂化复合材料相比,杂化复合材料在弯曲,拉伸和撞击测试中表现出优异的特性。这项研究中提出的结果表明,在杂化复合材料中,不同的纤维重量分数在混合复合材料的性质中起着至关重要的作用。单向方差分析(ANOVA),以查看测得的机械性能之间是否存在统计学上的显着差异。作为复合材料的主要好处之一是它们的强度与体重的高比例,对特定特性进行了比较,并观察到杂交的积极作用。
抽象背景可以通过特异性靶向触发抗体依赖性细胞介导的细胞毒性(ADCC)或通过遗传工程来表达嵌合抗原受体(CARS)来增强自然杀伤(NK)细胞的抗肿瘤活性。尽管抗体或汽车靶向,但某些肿瘤仍然对NK细胞攻击具有抗性。已知ICAM-1/LFA-1相互作用对NK细胞的自然细胞毒性的重要性,但它对ERBB2(HER2)特异性抗体曲妥珠单抗和ERBB2-培养基介导的NK细胞细胞毒性抗乳腺癌细胞诱导的ADCC的影响。方法,我们使用了表达高亲和力FC受体FcγRIIIA的NK-92细胞与曲妥珠单抗或ERBB2- CAR工程NK-92细胞(NK-92/5.28.Z)以及与ERBB2-CAR-2-CAR-2-CAR-2-CARID-ICAMID CYAMIS CYMINIC CYMINID CYMINIC CYMINID-CAR-2-CAR-2-CAR-92细胞(NK-92/5.28.z)结合使用,并或替代阻断NK细胞上的LFA-1。此外,我们特别刺激了FC受体,CAR和/或LFA-1,以研究其在免疫突触时的串扰,及其对抗体靶向抗体或靶向的NK细胞中脱粒和细胞内信号的贡献。结果阻断了LFA-1或ICAM-1的不存在会在曲妥珠单抗介导的ADCC中显着降低细胞杀伤和细胞因子释放,以针对ERBB2-阳性乳腺癌细胞,但在靶向汽车的NK细胞中并非如此。用5-Aza-2'-脱氧胞苷进行预处理,诱导ICAM-1上调,并反转ADCC中的NK细胞耐药性。此外,刺激抑制性NK细胞检查点NKG2A曲妥珠单抗单独没有充分激活NK细胞,需要额外的LFA-1共同刺激,而在CAR-NK细胞中ERBB2型车的激活会诱导的有效脱粒化,而与LFA-1无关。总内反射荧光单分子成像表明,CAR-NK细胞与排除ICAM-1的肿瘤细胞形成了不规则的免疫学突触,而曲妥珠单抗形成了典型的外周上分子超分子激活簇(PSMAC)结构。从机理上讲,ICAM-1的缺失不会影响ADCC期间的细胞 - 细胞粘附,而是导致通过PYK2和ERK1/2的信号降低,这是由CAR介导的靶向本质上提供的。
量子元流膜,即量子发射器的二维亚波长阵列,可以用作设计混合腔设计的镜子,其中光学响应由空腔限制的场的相互作用给出,并由阵列支撑的表面模式。我们表明,具有正交偶极取向的量子跨额层堆叠层可以用作具有螺旋性的腔。这些结构表现出超大的共振,可以通过数量级来增强进气场的强度,同时保留了谐振器内部循环的场的握力,而不是常规腔。可以利用围绕共振的空腔传动的快速相移,以敏感地检测穿过腔的手性散射器。我们讨论了这些谐振器作为手性分子歧视的传感器的可能应用。我们的方法通过测量粒子诱导的相移来描述一种新的手性传感方式。
1分子生物科学系,德克萨斯大学奥斯汀大学,奥斯汀,美国德克萨斯州奥斯汀2美国华盛顿州西雅图市弗雷德·哈钦森癌症中心的部门和计算生物学计划6北卡罗莱纳大学的微生物学和免疫学系,美国北卡罗来纳州北卡罗来纳州教堂山教堂山7号。 (J.J.L.),gci@utexas.edu(G.C.I.)
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年1月20日。 https://doi.org/10.1101/2024.01.17.576037 doi:Biorxiv Preprint