石墨烯尚未被视为这些应用的理想电极材料。在当代研究中,人们普遍承认,将缺陷引入石墨烯的结晶晶格是一种有效的策略,可以增强这种出色的碳同质同种异体的HET活性。7,8尽管确切的潜在机制仍然是正在进行的侵犯的主题,但通常认为缺陷工程(表示缺陷的精确和定量调节)可能会破坏高度离域的p-互共轭系统。这种破坏反过来导致在费米水平附近的状态(DOS)的局部电子密度增加,从而增强了石墨烯在催化过程中的反应性。9 - 11缺陷工程中的一个著名大道需要增加石墨烯中的内在缺陷,包括边缘站点,空缺,孔和拓扑缺陷。这些内在缺陷因其增加活性位点的密度的潜力而被认可,从而提高了石墨烯的HET活性。12到达这一目标,已经提出了各种策略,包括通过微型加工制造石墨烯纳米纤维13,14和磨球15以及多环状芳族烃的化学合成。16 - 18更重要的是,通过诸如电子束蚀刻,19氧化蚀刻,20和血浆处理等方法,在石墨烯晶格上的空缺或孔的创建,21,22
摘要:水泥和建筑行业产生了全球约 10% 的碳足迹。土聚物和碱激活混凝土为传统混凝土提供了可持续的解决方案。由于其缺点,土聚物和碱激活混凝土的实际应用受到限制。可加工性是开发土聚物和碱激活混凝土面临的问题之一。进行了大量研究以提供解决方案,以提高使用不同高效减水剂 (SP) 的能力。本文广泛回顾了 SP 对土聚物和碱激活混凝土的影响。研究文章在过去 5 年内在高质量期刊上发表,以了解不同 SP 的化学成分并分析它们对土聚物和碱激活水泥砂浆和混凝土的确切影响。随后,确定了 SP 对水泥砂浆的正常稠度和凝结时间、可加工性、抗压强度、弯曲强度、劈裂拉伸强度、微观结构和土聚物和碱激发混凝土的吸水率的影响。SP 在以所需剂量使用时可改善土聚物和碱激发混凝土;剂量过大会产生负面影响。因此,选择最佳的减水剂至关重要,因为它会影响土聚物和碱激发混凝土的性能。
多-ADP-核糖聚合酶(PARP)催化蛋白质聚ADP-核糖基化(parylation)。这种酶促翻译后的阳离子需要烟酰胺腺苷二核苷酸(NAD +)作为ADP-核糖的供体。ADP-核糖在各种类型的氨基酸残基的侧链之间的共价附着后,PARP可以继续在核糖基2 0 -OH位置依次添加ADP-核糖,从而导致线性或分支的聚-ADP-核糖(PAR)poly-Mers,最多300 ADP-ribose单位。1,2作为PARP家族的创始成员,PARP1在遗传毒性条件下占75 - 95%的细胞核化活性。3 - 5除了抚养许多蛋白质底物外,PARP1还经历了强大的自身释放。通过将聚合物添加到自身和其他蛋白质中,PARP1介导的Parylation在
癌症是全球最可怕的疾病,也是第二大死亡原因。为了设计出有效的分子来应对这一主要死亡原因,人们一直在不断研发。为了降低毒性水平并提高药物对癌症靶标的选择性,杂合分子的开发已成为研究的中心,科学家们正在不懈努力地开发这种与之前的发展无可比拟的杂合分子。杂环部分尿嘧啶及其许多衍生物已被证实是有前途的抗癌剂。此外,尿嘧啶和 5-氟尿嘧啶 (5-FU) 与不同药效团的偶联已被证明是一种极好的抗癌策略。因此,本综述旨在集体介绍所有早期和最近的尿嘧啶和 5-FU 杂合体的发展,据报道这些杂合体具有显著的抗癌特性。我们可以确信,本文可以作为进一步开发尿嘧啶和 5-FU 混合物的基础,并必将激励药物化学家生产出独特的抗癌药物。
https://www.u-tokyo.ac.jp/ja/bobs/jobs/jobs/jobs/t01.html <https://www.u-tokyo.ac.jp/ja/bobs/jobs/jobs/jobs/t01.html <
一种集成工具,用于比较不同组成(单体,低聚物,杂膜复合物)的蛋白质,RNA和DNA的3D结构,以及成对和多扣比对。纸(外部站点):https://www.nature.com/articles/s41592-022-01585-1
摘要:过热会影响某些抗癌药物的溶解度或亲脂性等特性。这些与温度相关的变化可以提高药物的效率和选择性,因为它们可能会影响药物的生物利用度、通过细胞膜的扩散或活性。最近一种创建热敏分子的方法是将氟原子掺入化学结构中,因为氟可以调节某些化学性质,如结合亲和力。本文我们报道了具有长烃链和同源氟化链的 1,3,5-三氮杂-7-磷杂金刚烷 (PTA) 衍生的磷烷金衍生物的抗癌作用。此外,我们还分析了温度对细胞毒性作用的影响。所研究的金(I)复合物与 PTA 衍生的磷烷对人类结肠癌细胞(Caco-2/TC7 细胞系)表现出抗增殖作用,可能是通过抑制细胞 TrxR 导致细胞内氧化还原状态功能障碍。此外,细胞周期因 p53 的激活而改变,复合物通过线粒体去极化和随之而来的 caspase-3 激活引起细胞凋亡。此外,结果表明,高温和多氟化链的存在会增强这种细胞毒性作用。
宽带间隙(WBG)碱性晶酸盐透明氧化物半导体(TOSS)近年来引起了越来越多的关注,因为它们的高载流子迁移率和出色的光电特性,这些特性已应用于诸如Flat-Panel显示器等广泛的应用。然而,大多数碱性地球酸盐是由分子束外延(MBE)生长的,有关锡源的问题存在一些棘手的问题,包括带有SNO和SN源的波动性以及SNO 2源的分解。相反,原子层沉积(ALD)是具有精确的化学计量控制和原子尺度上可调厚度的复杂stannate钙钛矿生长的理想技术。在此,我们报告了la-srsno 3 /batio 3 perovskite异质结构异质集成在SI(001)上,该结构使用ALD种植的La掺杂的Srsno 3(LSSO)作为通道材料,并用作MBE生长的Batio 3(BTO)作为介电材料。反射性高能电子衍射和X射线衍射结果表明每个外延层的结晶度为0.62,全宽度最高(FWHM)。原位X射线光电子光谱结果证实,ALD沉积LSSO中没有SN 0状态。这项工作扩展了当前的优化方法,用于减少外在LSSO/BTO钙钛矿异质结构中的缺陷,并表明过量的氧气退火是增强LSSO/BTO异质结构的电容性能的强大工具。Besides, we report a strategy for the post-treatment of LSSO/BTO perovskite heterostructures by controlling the oxygen annealing temperature and time, with a maximum oxide capacitance C ox = 0.31 μF/cm 2 and a minimum low- frequency dispersion for the devices with 7 h oxygen annealing at 400 C. The enhancement of capacitance properties is primarily attributed to a在额外的异位过量氧气退火过程中,膜中氧空位的减少和异质结构界面中的界面缺陷。
如果有两方符合以下(a)或(b)的情况。但是,如果子公司是《公司法》(2005 年法律第 86 号)第 2 条第 3 款和《公司法施行规则》(2006 年法务部令第 12 号)第 3 条所定义的子公司,则不在此限;下同。此外,如果子公司之一为《公司改组法》(1952 年法律第 172 号)第 2 条第 7 款所定义的改组公司(以下简称“改组公司”)或《民事改组法》(1999 年法律第 225 号)第 2 条第 4 款所定义的正在进行改组程序的公司(以下简称“改组程序”),则不在此限。 A.母公司(指公司法第2条第4项及公司法施行细则第3条所定义的母公司)
