摘要 高分相机(GFXJ)是我国第一款自主研发的机载三线阵CCD相机,设计飞行高度2000m时,对地面三维点的GSD为8cm、平面精度为0.5m、高程精度为0.28m,满足我国1:1000比例尺测绘要求。但GFXJ原有的直接定位精度在平面方向约为4m,高程方向约为6m。为满足地面三维点精度要求,提高GFXJ直接定位精度,本文对GFXJ几何定标进行了深入研究。本次几何标定主要包括两部分:GNSS杆臂与IMU杆轴失准标定、相机镜头与CCD线畸变标定。首先,简单介绍GFXJ相机的成像特性。然后,建立GFXJ相机的GNSS杆臂与IMU杆轴失准标定模型。接下来,建立基于CCD视角的GFXJ镜头与CCD线畸变分段自标定模型。随后,提出迭代两步标定方案进行几何标定。最后,利用在黑龙江省松山遥感综合场和鹤岗地区获取的多个飞行区段进行实验。通过标定实验,获得了GNSS杆臂和IMU视轴失准的几何标定值。为前向、下视和后向线阵独立生成了可靠的CAM文件。实验表明,提出的GNSS杆臂和IMU视轴失准标定模型和分段自标定模型对GFXJ相机具有良好的适用性和有效性。提出的两步标定方案可以显著提高GFXJ相机的几何定位精度。GFXJ原始直接地理定位精度在平面方向约为4 m,在高程方向约为6 m。平面精度约为0.2 m,高程精度小于0.28 m。此外,本文建立的定标模型及定标方案可为其他机载线阵CCD相机的定标研究提供参考。利用GNSS杠杆臂和IMU视轴失准校准值以及CAM文件,GFXJ相机的定位精度可以在仅使用几个地面控制点进行空中三角测量后满足3D点精度要求和2000 m飞行高度1:1000的测绘精度要求。
- 铝合金棒、杆和线材;轧制、拉制或冷加工,3003。- 铝合金 5052,棒、杆和线材;轧制、拉制或冷加工。- 铝合金 6061,棒、杆、线材和特殊形状;轧制、拉制或冷加工。- 铝合金 3003,板材和薄板。- 铝合金 5052,板材和薄板。- 铝合金 6061,板材和薄板。- 铜硅、铜锌硅和铜镍硅合金:棒、线材、形状、锻件和扁平产品(扁平线材、带材、薄板、棒材和板材)。- 铝合金永久和半永久模具铸造。- 铝合金砂型铸件。- 含铅和无铅黄铜:扁平产品(板材、棒材、薄板和带材)。- 含铅和无铅黄铜:棒材、型材、锻件和带成品边缘的扁平产品(棒材和带材)。- 海军黄铜:棒材、线材、型材、锻件和带成品边缘的扁平产品(棒材、扁线和带材)。- 海军黄铜:扁平产品(板材、棒材、薄板和带材)。- 银钎焊合金。- 青铜锰;棒材、型材、锻件和扁平产品(扁线、带材、板材、棒材和板材)。- 青铜、磷;棒材、板材、棒材、板材、带材、扁线和结构型材及特殊形状型材。- 镀铬(电沉积)。- 铜棒材和型材;以及带精加工边缘的扁平产品(扁线、带材和棒材)。- 铜铍合金棒材、棒材和线材(铜合金编号 172 和 173)。- 铜铍合金带材(铜合金编号 170 和 172)。- 镍铜合金棒、杆、板、片、带、线、锻件、结构和特殊形状型材。- 镍铜铝合金,锻造(UNS N05500)。- 镍铜合金和镍铜硅合金铸件。- 镀镍(电沉积)。
本报告介绍了一项研究结果,该研究旨在探讨人工智能 (AI) 算法是否能通过使用安装在 Svegros 的一个罗勒农场上空的普通监控摄像头拍摄的图像来估算植物的高度,以及效果如何。该项目具有重要的经济意义,因为太高的罗勒植株不适合商店的货架,而太小的植株又会让顾客失望。这是 Svegro 一项更大运动的一部分,该运动旨在实现植物生长自动化监测和护理,降低能耗并减少浪费。为了测量高度,在摄像头下方的传送带上移动的植物后面放置了标尺(Robel 杆),这样就可以根据 Robel 杆上未被植物覆盖的可见线的数量手动确定植物的高度。研究问题是设计一种基于人工智能的解决方案来预测植物上方可见的线数。经过两个月的图像收集和手动注释后,使用来自罗勒田的单个 Robel 杆的图像训练了三个不同复杂度的卷积神经网络 (CNN) 模型。使用 Grad-CAM 获得的结果表明,网络不会学习数线,而是将叶子的大小和形状与高度关联起来。最佳得分是平均绝对误差 0.74 和均方误差 0.83,其中 MAE 为 2.53 和 MSE 为 11.11,这对应于仅预测数据集中值。这是使用 EfficientNet0B 实现的。将结果与人类的表现进行了比较,结果显示人类的表现仍然更好,但由于数据嘈杂,结果令人印象深刻,分数超出了 Svegro 团队的预期,因此最终模型现在在那里使用。实验还表明,即使训练图像中没有 Robel 杆,也可以获得相当好的结果,这意味着 Svegro 团队可以停止布置 Robel 杆,但精度会略有下降。提出了一些改进建议,例如改变 Robel 杆的设计,以帮助未来的研究以更高的精度完全自动化该过程。
1 、电源走线包括 GND 、 SW 和 IN ,走线必须保证宽和短。 2 、 SW 、 L 和 D 开关的节点,布线要宽和短,以减少电磁干扰。 3 、输入和输出电容尽量贴近芯片放置。 4 、 R1 和 R2 和 FB 脚连线必须尽可能保证短。 5 、 FB 脚反应灵敏,应远离 SW 。 6 、芯片 GND 、 CIN 和 Cout 应连接较近,直接到地线层。
图3 WAAM系统。(1)IRB 2600; (2)旋转协同5000 CMT焊机; (3)VR 7000 CMT电线馈线; (4)CMT火炬; (5)CCD相机; (6)3D配置文件扫描仪; (7)红外温度传感器; (8)2-DOF工件
在可能的情况下,要获得并指示特定培训目标的专业概况该研究路径为所有宏观文本中的学生提供了共同的培训,这些培训准确地表征了科学学科领域,即Ing-Ind/34和Ing-Ing-Ing/06,例如,仪器,设备和医疗系统的应用程序,即仪器和医学的应用程序,例如电气和/或磁性现象和设备来测量并修改它们,数据和生物医学信号的处理,生物症,是医学生物学知识的表示。普通培训将与主题领域的教学融合,但是生物医学兴趣,适合医学科学领域以及机械工程和信息领域。该培训课程将能够专注于方法和技术方面,这些方面是指不同学科领域的生物工程应用,包括建模,生理系统的识别和控制,医疗领域的信息处理系统,远程辅助和远程诊断系统,卫生系统的行使,测试方法,认证方法,安全以及安全以及安全和安全和安全和安全和安全和安全系统。根据安全性和隐私标准,医疗设备,管理组织模型健康以及敏感数据的传输/处理的电磁兼容性。培训课程将通过额叶课程,课堂练习以及理工学院和医学院实验室实施。在学位课程的法定教义背景下提出的实际活动也可以在公共/私人医疗保健和医疗机构进行,不仅是为了鼓励
1934 年,伦敦大奥蒙德街医院的丹尼斯·布朗爵士首次描述了传统的靴子和杆式足外展支架,这种支架被国际公认为预防马蹄足复发的标准矫形器。尽管多年来,丹尼斯·布朗支架的概念并没有发生太大的变化,但 C-Pro Direct 最先进的 ADM AFO 和外旋杆代表了重大进步,同时忠实于 Ponseti 博士提出的要求。ADM AFO 和外旋杆的每一个细节都经过精心设计,以最大限度地提高临床表现和患者依从性。该支架更轻、更坚固,外观时尚,同时融入了许多创新设计特点,以促进最佳临床效果。本文档解释了与所有当前替代方案相比,C-Pro Direct 的马蹄足 ADM AFO 和外旋杆马蹄足支架为何以及如何:• 更好地促进伸直外侧边缘的发展并减少高弓足畸形• 更好地促进足部活动性和活动范围的增加• 更好地固定足部,更贴身舒适,比最流行的替代系统轻 32% 且更坚固• 降低皮肤破损、水泡和溃疡的风险• 如果需要更换支架类型,可降低成本• 鼓励更好地遵守支撑协议并获得护理人员/父母的认可• 减少患者在诊所的时间并确保正确应用规定的杆配置• 使马蹄足患者能够从彻底改变现代主流鞋类制造业的先进制造技术中受益最终,这些巨大的优势转化为更好的患者治疗效果和更低的治疗成本。这就是为什么所有马蹄足临床医生现在都应该考虑使用 ADM 模块化支撑系统的原因。
注意;避免胴体损坏 1. 使用前,将所有注射器具在水中煮沸 10 分钟(或同等时间)进行消毒。不要对器械使用强力消毒剂。 2. 接种疫苗期间始终保持清洁。必须小心避免疫苗、针头和注射器内部零件与未消毒的表面或未洗过的手接触而受到污染。 3. 保持针头锋利清洁。经常更换。 4. 使用最短的针头,不超过 15 毫米。 5. 避免在潮湿天气或多尘条件下给动物注射。 6. 本产品只能注射到皮下。 7. 在耳朵后面的颈部高处注射。不要在任何其他地方注射。小羊羔可以在被束缚在羊圈中时接种疫苗。
注意:该报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府,或其任何机构,或其任何雇员,其任何承包商,分包商或其雇员都不会对任何信息,设备,产品或程序所披露的任何信息,设备,产品或程序的准确性,完整性或有效性,表明其使用不属于私有权利的任何法律责任或责任。以此处参考任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或对其任何代理机构或其承包商或分包商的认可,建议或偏爱。本文所表达的观点和意见不一定陈述或反映美国政府,其任何机构或其承包商的观点和意见。
模块包括螺纹嵌件,每个顶角都有 ¼ 英寸吊环螺栓,用于固定地震约束线。应将泡沫塑料垫片材料涂抹在模块所处的 T 形杆表面上。