访问微生物学是一个开放的研究平台。可以通过本文的在线版本找到预印刷,同行评审报告和编辑决策。收到2024年1月5日; 2024年6月4日接受;于2024年6月27日出版了作者分支:1个细菌学实验室,马达加斯加antananarivo的Chu Joseph Raseta Befelatanana; 2马达加斯加antananarivo的马达加斯加的巴斯德学院实验细菌学单元; 3小儿服务,楚约瑟夫·拉塞塔·贝菲拉塔纳(Chu Joseph Raseta Befelatanana),马达加斯加的安塔纳里沃(Antananarivo); 4 Madagascar Antananarivo的中心医院的细菌实验室Mère -enfantTsaralàlana; 5巴斯德研究所,感染部门的生物学,巴黎大学,INSERM U1117,巴黎,75015,法国; 6巴斯德研究所,国家参考中心以及法国巴黎的李斯特菌中心合作; 7传染病和热带医学司,Institut Imagine,APHP,Necker-Enfants Malades Malades University Hospital,法国巴黎,法国。*信函:Mamitina Alain Noah Rabenandrasana,Rabalainnoah@gmail。com关键字:致命案例;基因组表征;李斯特氏病;马达加斯加;脑膜炎。缩写:Bdal,Bruker Daltonics图书馆; BigSDB,细菌分离株基因组序列数据库; CGMLST,核心基因组多分解序列分型; CSF,脑脊液; IVD,体外诊断; MALDI-TOF MS,基质辅助激光解吸/电离飞行时间质谱; MLST,多级别序列键入; MSP,主要光谱曲线; PCR,聚合酶链反应。在Bioproject PrjNA1032442下,组件和SRA数据存放在NCBI上。000764.v3©2024作者†这些作者对这项工作也同样贡献了本文的在线版本提供补充表。
摘要:人类的益生菌和牲畜的直接喂养微生物是支持免疫力的越来越流行的饮食成分。这项研究的目的是确定饮食中枯草芽孢杆菌MB40(MB40)对饮食源性病原体单核细胞增生李斯特菌(LM)挑战的仔猪免疫的影响。三周大的小猪(n = 32)随机分配给四组:(1)基础饮食,(2)具有LM挑战的基础饮食,(3)MB40补充的饮食和(4)MB40供应LM挑战的MB40饮食。在整个14天(d)期间提供实验饮食。在D8上,第2和4组中的小猪在每只小猪的10 8 CFU/mL下用LM接种。血液样品,以进行生化和免疫反应培养。在D15上对动物进行安乐死,并在D15上进行肿瘤和脾脏的细菌计数和肠形态分析。在D15时,LM挑战与脾脏的体重增加(P = 0.017),中性粒细胞的循环种群更大(P = 0.001)和单核细胞(P = 0.008)以及与非接收器的对照组相比,卵形绒毛的高度与隐层深度比(P = 0.009)有关。MB40补充剂分别降低了肝脏和脾脏的LM细菌计数,分别降低了67%(P <0.001)和49%(P <0.001)(P <0.001)。MB40补充也与循环浓度的单核细胞降低有关(p = 0.007)。总的来说,这些数据表明补充MB40是一种安全且耐受性良好的方法,可增强全身性李斯特菌感染期间的免疫力。
细菌CRISPR-CAS系统采用RNA引导的核酸酶破坏噬菌体(病毒)DNA。噬菌体反过来又进化了多样化的“抗Crispr”蛋白(ACR)以抵消获得的免疫力。在单核细胞增生李斯特菌中,预言编码2-3个不同的抗Cas9蛋白,始终存在Acriia1。但是,Acriia1s普遍存在及其机制的重要性尚不清楚。在这里,我们报告了AcriiA1通过催化HNH结构域与Cas9高亲和力结合。在李斯特菌的裂解过程中,Acriia1触发Cas9降解,但在裂解感染期间,由于其多步灭活机制,Acriia1无法阻止Cas9。因此,噬菌体需要额外的ACR,以迅速结合并灭活Cas9。acriia1还唯一地抑制了在李斯特菌(类似于saucas9)和II-C型Cas9中发现的高度差异Cas9,这可能是由于Cas9 HNH域的保护。总而言之,李斯特菌噬菌体在裂解生长中灭活cas9
Loopamp 单核细胞增生李斯特菌检测试剂盒 48 次检测 LMP701 李斯特菌检测试剂盒 48 次检测 54,700 日元 146829 1 年 -20℃
干草和单核细胞增生李斯特氏菌的基因型异质性 Maria Manuela Mendes Guerra 博士:动物科学与技术顾问:Fernando Manuel d' Almeida Bernardo 博士 测试完成于:2003 年 7 月 11 日 摘要 在 61 份 (9%) 的干草中检测到单核细胞增生李斯特氏菌。 673 个食品样本和 123 个环境样本中的 5%。在 29 个样品中同时分离出一种以上李斯特菌 (4%)。结合传统分型技术来表征 95 个单核细胞增生李斯特菌分离株,识别出 17 个不同的群体。在四种情况下,发现从同一样本中获得的一些分离株属于不同的血清型。 AFLP 技术的首次评估是使用 Eco R1 对 84 个单增李斯特菌分离株进行 DNA 消化,获得了对流行病学分型有用的更精细、更可重复的区分。在 31 个菌株中,37°C 时对 NaCl 的最大耐受性为 8% 至 13%,25°C 时为 10% 至 14%,5°C 时为 11% 至 14%。一些菌株的最低耐受 pH 值在 4.0 至 4 之间。 25°C 和 37°C 温度下为 3,5°C 下为 3.9 至 4.3。防腐剂(硫柳汞)的 MIC 谱相对较宽。单增李斯特菌 Scott A 细胞先前暴露于应激因子可能会为它们提供保护,使其免受随后的乳链菌肽暴露。单核细胞增生李斯特菌的表型和基因型异质性 摘要 在 61 (9%) 或
在食品加工环境中使用的材料上可以建立由背景微生物群和单核细胞增生李斯特菌组成的微生物多物种群落。这些微生物多物种群落中菌株的存在、丰度和多样性可能受到相互作用和对常规清洁和消毒 (C & D) 程序的抵抗力差异的影响。因此,本研究旨在表征在没有和存在多种背景微生物群 (n = 18) 的情况下,单核细胞增生李斯特菌菌株混合物 (n = 6) 在聚氯乙烯 (PVC) 和不锈钢 (SS) 上形成生物膜过程中的生长和多样性。从蘑菇加工环境中分离出单核细胞增生李斯特菌和背景微生物菌株,并在模拟蘑菇加工环境条件下进行实验,使用蘑菇提取物作为生长培养基,以环境温度 (20 ◦ C) 作为培养温度。在单一物种生物膜培养期间施用的单核细胞增生李斯特菌菌株在 PVC 和 SS 试样上均形成生物膜,并使用氯化碱性清洁剂和基于过氧乙酸和过氧化氢的消毒剂进行四轮 C & D 处理。每次 C & D 处理后,在总共 8 天的培养期内将试样重新培养两天,C & D 可有效去除 SS 上的生物膜(减少量为 4.5 log CFU/cm 2 或更少,导致每次 C & D 处理后计数都低于检测限 1.5 log CFU/cm 2 ),而对 PVC 上形成的生物膜进行 C & D 处理产生的减少量有限(减少量在 1.2 到 2.4 log CFU/cm 2 之间,分别相当于减少量 93.7 % 和 99.6 %)。在多物种生物膜培养过程中,将单核细胞增生李斯特菌菌株与微生物群一起培养,48 小时后,单核细胞增生李斯特菌在生物膜中形成,因此 SS 和 PVC 上的多物种生物膜中单核细胞增生李斯特菌菌株多样性较高。C & D 处理可从 SS 上的多物种生物膜群落中去除单核细胞增生李斯特菌(减少 3.5 log CFU/cm 2 或更少,导致每次 C & D 处理后计数低于 1.5 log CFU/cm 2 的检测限),在不同的 C & D 周期中,微生物群落物种的优势有所不同。然而,与单一物种生物膜相比,PVC 上多物种生物膜的 C & D 处理导致李斯特菌的减少量较低(介于 0.2 和 2.4 log CFU/cm 2 之间),随后李斯特菌重新生长,肠杆菌科和假单胞菌稳定占主导地位。此外,在没有和存在浮游背景微生物群培养物的情况下,李斯特菌的浮游培养物沉积在干燥表面上并干燥。与 PVC 相比,SS 上观察到的干燥细胞计数随时间的下降速度更快。然而,C & D 的应用导致两个表面上的计数低于 1.7 log CFU/coupon 的检测限(减少 5.9 log CFU/coupon 或更少)。这项研究表明,在 C & D 处理后,单核细胞增生李斯特菌能够在 PVC 上形成单一和多种生物膜,并且菌株多样性高。这突出表明需要对 PVC 和类似表面应用更严格的 C & D 制度处理,以有效去除食品加工表面的生物膜细胞。