后量子密码学的主要候选方案之一是基于编码理论的,更详细地说,它的安全性基于解码随机线性码的 NP 完全问题。基于代码的密码学最早出现在 1978 年 McEliece 的开创性工作中。解决这个 NP 完全问题并从而解码随机码的最快算法是信息集解码。这些算法的输入大小成本呈指数增长。因此,它们不被视为对基于代码的密码系统的攻击,而是用作确定实现给定安全级别所需公钥大小的工具。基于代码的密码学的主要缺点是其公钥大小巨大。许多研究人员试图通过提出不同的代码系列作为密钥来解决这个问题。最近,社区将重点转向了不同的方向:改变代码的底层度量。事实上,基于秩度量的密码系统可以实现非常小的密钥大小。在论文的这一部分,我们遵循了基于代码的加密的新路径,并在李度量中提供了不同的信息集解码算法。李度量非常有前景,因为它可以纠正比汉明度量更多的错误,事实上,我们的理论比较证实了密钥大小将大幅减少。
20 世纪 40 年代早期,Weber 和 Black 建议使用卵磷脂和聚山梨醇酯来中和季铵化合物的抗菌作用 (6)。1965 年,AOAC 认可该方法用于抗菌测定,并将其应用扩展到所有阳离子洗涤剂。1978 年,FDA 将其作为每次化妆品微生物检查的预增菌培养基。化妆品的化学成分很有可能通过生物体的新陈代谢而改变,从而导致化妆品变质并对使用者造成伤害 (1,5,7)。直接菌落计数和增菌培养是从化妆品中分离微生物的首选方法。Letheen 这个词代表卵磷脂和聚山梨醇酯 (tween) 80 的组合。建议使用含有 Triton X-100 的 Letheen 肉汤来检测酵母和霉菌,因为这种肉汤可以让大多数生物大量生长。 Triton X-100 是非离子型的,可分散微生物,使计数更容易。蛋白胨、HM 蛋白胨 B 为微生物提供含氮营养物质、碳化合物和微量元素。在培养基中加入卵磷脂和聚山梨醇酯 80 可以从含有化妆品中使用的消毒剂或防腐剂残留物的材料中回收细菌。加入聚山梨醇酯 80 可消除酚类化合物、六氯酚和福尔马林,并与卵磷脂一起中和乙醇 ( 2 )。卵磷脂还可以中和化妆品中的季铵化合物。氯化钠可维持培养基的渗透平衡。Triton X-100 可用作表面活性剂。化妆品中含有防腐剂,在接种过程中应至少部分灭活,而该培养基有助于稀释和中和。