由 Aaron Beck 提出的抑郁症认知理论得到广泛认可,该理论关注的是信息处理的偏见,强调情感和概念信息的消极方面。当前,人们试图发现这种认知和情感偏见的神经机制,并成功地确定了与情绪、注意力、沉思和抑制控制等几种偏见功能相关的各个大脑区域。然而,抑郁症患者如何发展出这种选择性消极处理的神经生物学机制仍存在疑问。本文介绍了一个以额叶边缘回路为中心的神经学框架,具体分析和综合了杏仁核、海马和内侧前额叶皮质内的活动和功能连接。首先,建立了正反馈回路如何在自动水平上导致抑郁症患者杏仁核持续过度活跃的可能解释。在此基础上,提出了两个假设:假设 1 围绕双向杏仁核海马投射,促进负面情绪和记忆的放大,同时阻碍海马吸引子网络中对立信息的检索。假设 2 强调腹内侧前额叶皮层通过与杏仁核和海马一起概括概念和情感信息,参与建立负面认知框架。本研究的主要目的是改进和补充现有的抑郁症病理模型,推动情感障碍神经科学当前理解的前沿,并最终有助于成功康复令人衰弱的情感障碍。
Luby等。(2013)调查了儿童贫困对脑发育的影响及其成年年龄后的影响。该研究还考虑了主要照顾者的行为:他们的护理对孩子的中介作用,以及通过推断孩子的发育中的大脑。参与者每年经过3至6年的社会和认知评估,然后进行了两次MRI扫描,一个整个大脑以及一个杏仁核和海马地区。在此预先MRI期间还记录了他们的看护人的支持或敌意。MRI扫描测量了白质和皮质灰质的大脑体积,以及海马和杏仁核的体积。
早期的压力(EL)或逆境,特别是在儿童时期忽视和虐待的形式,与成年后的精神和身体健康状况不佳有关。然而,这些关系是由EL本身的后果还是其他经常与EL同时发生共发生的暴露的后果介导的。为了解决这个问题,我们在大鼠中进行了一项纵向研究,以隔离EL对与焦虑和抑郁有关的区域脑体积和行为表型的影响。我们使用了慢性ELS的重复母体分离(RMS)模型,并在整个成年期进行了行为测量,包括概率逆转学习(PRL),对渐进率任务,蔗糖偏好,新颖性偏好,新颖性反应性,新颖的反应性以及对高架的焦虑行为进行响应。我们的行为评估与磁共振成像(MRI)相结合,以定量三个时间点的区域脑体积:立即在RMS之后,成年后不进一步压力,并且成年后期后期有进一步的压力。我们发现RMS引起了持久的,性二态的偏见,对PRL任务的负面反馈做出了反应。RMS还放慢了PRL任务的响应时间,但没有直接影响任务性能。rms动物也对第二种压力源具有独特的敏感,该压力源不成比例地损害其性能,并减慢了对PRL任务的反应。MRI显示RMS动物的杏仁核体积较大。尽管对“抑郁症状”和“焦虑症”行为的常规测试缺乏影响,但这些行为和神经生物学效应仍然持续到成年,并且缺乏任何Anhedonia的证据。我们的发现表明ELS具有长期的认知和神经行为效应,与成年后的压力相互作用,并且可能与理解人类焦虑和抑郁的病因有关。
脑脊液体积在 24 个月时恢复正常(12),这与横断面研究中老年人胼胝体体积减小的报告一致(13)。脑脊液体积的变化轨迹代表了另一种发育模式,即在被诊断为 ASD 的儿童中,从 6 个月大(14、15)到 4 岁(16)期间持续增加。综上所述,这些研究表明,ASD 儿童出生后早期大脑发育会发生一系列年龄特异性变化,同时行为也会发生动态变化。这表明,婴儿早期的症状前大脑变化可能代表一系列相互关联的大脑和行为变化,这些变化会导致自闭症整个综合症的出现,并在生命的 2 和 3 年内巩固为一种临床可诊断的疾病(17)。进一步描述大脑变化的性质和顺序将为阐明这种疾病的发病机制提供重要线索,并为制定针对这些发展轨迹的针对性干预措施提供信息。尽管长期以来,结构和功能神经影像学和尸检研究表明皮层下结构,特别是杏仁核,与 ASD 有关,但尚无研究检查过 ASD 婴儿期皮层下大脑发育的性质和时间。神经影像学研究表明 2 至 4 岁的 ASD 儿童杏仁核增大(18 – 22),尸检研究表明杏仁核神经元数量过多(23)和树突棘密度增加(24)可能是导致早期杏仁核过度生长的细胞过程。然而,绝大多数神经影像学研究都是横断面研究,并且是在确诊后的儿童(即 2 岁及以上)中进行的,因此无法了解杏仁核增大的发育时间过程、其与出现诊断特征和最终诊断的时间关系,以及增大是杏仁核特有的还是也发生在婴儿期的其他皮质下结构中,例如基底神经节。此外,对患有 ASD 的婴儿进行的神经影像学研究尚未检查 ASD 与其他神经发育障碍关系中脑部发现的特异性。在这项研究中,我们检查了选定的皮质下结构(杏仁核、尾状核、壳核、苍白球、丘脑)的纵向结构 MRI,以对比四组婴儿出生后早期脑发育情况:患有脆性 X 综合征(FXS)的婴儿;患自闭症可能性较高的婴儿(因为有一个患有自闭症的哥哥姐姐),后来患上了自闭症;患自闭症可能性较高的婴儿没有患上自闭症;对照组婴儿患自闭症的可能性较低,但发育正常。研究设计通过对比特发性自闭症(一种行为定义的发育障碍)与遗传定义的障碍 FXS 的大脑和行为发育,研究了疾病特异性问题。具有重叠的认知和行为特征(25)。此外,我们注意到,这项研究将家族性自闭症(自闭症的一个亚组,其病因通常归因于常见的多基因遗传[26])与 FXS(一种遗传性发育障碍和
按摩或触摸是通过身体的触摸来给予幸福。这种幸福不仅是身体上的,而且是神经上的、社会上的,重写神经回路并改善突触可塑性。通过这张图片,我想强调按摩的艺术、手法、康复以及运动和心理学。在不确定的时刻,我想给出确定性;我们将回归什么来再次灌输幸福。这是我们研究的主题。事实上是两个。我们科学地证明了按摩和 Lagree 方法对于更好的认知发展至关重要,所以请私下将材料发给我。如果你愿意,你可以;你是一个有思想的人,当你思考的时候,要有远大的理想。想象、创造、刺激和扩展。通过创造最好的自己来重塑自我。现在想象并创造理想的现实。杏仁核是位于边缘系统的杏仁状核群,位于大脑内侧颞叶深处,在处理和存储各种情绪的记忆方面是老大。事实上,杏仁核在有意识的大脑之前就已经体验到情绪。压力反应的反复触发使杏仁核对明显的威胁更加敏感,这又刺激了压力反应,从而进一步触发杏仁核,如此反复,形成恶性循环。杏仁核有助于形成“内隐记忆”,即隐藏在意识认知之下的过去经历的痕迹。随着杏仁核变得更加敏感,它会越来越多地为这些内隐回忆染上恐惧的残留色彩,导致大脑持续感到焦虑,而这种焦虑与当前的情况不再有任何关系。与此同时,海马体对于形成“外显记忆”至关重要——清晰、有意识地记录真正发生的事情——但会因身体的压力反应而磨损。皮质醇和其他糖皮质激素会削弱大脑中的突触并抑制新突触的形成。当海马体变弱时,产生新的神经元并形成新的记忆就变得更加困难。因此,敏感的杏仁核记录的痛苦、恐惧经历被编入内隐记忆,而变弱的海马体则无法记录新的外显记忆。当这种情况发生时,你最终会记不清是什么让你开始做这件事,但会非常清楚地感觉到一些不好的事情——非常糟糕的事情——正在发生。我们必须超越身体才能改变身体,克服自我才能改变自我。我们必须成为纯粹的意识,超越时间,忘记已知的现实,进入未知的世界,观察无限的可能性,并适应可能的现实,因为如果我们思考它们,在量子宇宙中它们已经存在。
摘要:尽管临床观察表明杏仁核受损的人有异常的恐惧反应和减少的恐惧体验,但这些印象尚未得到系统研究。为了填补这一空白,我们对一位罕见的人类患者 SM 进行了一项新研究,她患有局灶性双侧杏仁核损伤。为了激起 SM 的恐惧感,我们让她接触活蛇和蜘蛛,带她参观鬼屋,并向她展示能引起情感共鸣的电影。SM 从未表现出恐惧,她也从未承认过超过最低限度的恐惧感。同样,在大量自我报告问卷、3 个月的真实生活体验样本和充满创伤事件的生活史中,SM 反复表现出缺乏明显的恐惧表现和总体上缺乏恐惧体验。尽管她没有恐惧感,但 SM 能够表现出其他基本情绪并体验相应的感受。研究结果支持了这样的结论:人类的杏仁核在引发恐惧状态方面起着关键作用,而缺乏这种状态就会阻碍恐惧体验本身。
为了理解 MMO 在促进恢复力以及评估和治疗战斗和作战应激伤亡方面的作用,首先必须考虑人类应激反应背后的基本原理。人类应激反应系统的作用是在外部威胁和环境变化的情况下维持体内平衡。它通过在威胁面前引发“战斗、逃跑或冻结”等保护性行为来实现这一点。应激反应系统还促进快速回忆过去的威胁信息。在极端压力下,这些反应和回忆系统会产生与威胁不成比例的行为和症状。参与应激反应的主要大脑系统包括杏仁核、海马体和前额叶皮层。1 这些区域都处理感官信息,但处理方式和速度不同。杏仁核从丘脑接收直接感官输入并快速识别威胁。在威胁面前,杏仁核会产生适当的战斗、逃跑或冻结反应信号。海马体和前额叶皮层接收相同的感官信息,但这些大脑区域的通路速度较慢,旨在整合额外的记忆和背景信息。在健康、无压力的个体中,这些通路调节或抑制杏仁核反应。长期或极端的
图 2 杏仁核反应性与年龄相关变化的多元宇宙分析。(a)。恐惧与年龄相关变化的规格曲线 > 基线杏仁核反应性。点表示估计的线性年龄相关变化,线表示相应的 95% 后验区间 (PI)。模型按与年龄相关的变化估计值排序,虚线表示所有规格的中值估计值。颜色表示 beta 估计值的符号以及相应的后验区间是否包含 0(红色 = 不包括 0 的负数;蓝色 = 包括 0 的负数,绿色 = 包括 0 的正数,黑色 = 所有规格的中位数)。(b)。A 中每个模型对应的模型规格信息。y 轴上的变量表示分析选择,相应的颜色标记表示已做出选择,空白处表示在给定的分析中未做出选择。在每个类别面板(杏仁核 ROI、组级模型和参与者级模型)中,决策点按做出相应选择时的中位模型排名从上到下排序(即,每个面板顶部的选择往往具有更负面的与年龄相关的变化估计值)。带有误差线的黑点表示在相应线上指示的做出选择的规范的中位数和 IQR 排名。(c)。参与者级数据和模型预测的与年龄相关的杏仁核反应性变化的示例,包括恐惧 > 基线(绿色)和中性基线(橙色)。数据显示为使用原生空间双侧杏仁核掩模、24 个运动回归器、t 统计量、高通滤波和 FSL 中的参与者级 GLM 的预注册管道。点表示参与者级估计值,浅线连接多次研究访问的参与者的估计值,带有阴影区域的暗线表示模型预测和 95% 后验区间。(d)。一组模型的规格曲线分别参数化参与者内(右)与参与者间(左)的年龄相关变化,包括恐惧 > 基线(绿色)和中性 > 基线(橙色)对比,以及跨规格的中位数(黑色)。请参阅 https://pbloom.shinyapps.io/amygdala_mpfc_multiverse/ 了解交互式可视化
现代脑成像技术与复杂网络理论的组合,即图理论提供了分析人脑网络的强大工具(Power等,2010; Wang和Wang,2014)。大脑功能网络的研究为理解病理机制,然后为早期诊断神经精神疾病的帮助提供了一种新的观点(Wang等,2021)。先前的研究表明,PSD可能是由于某些特定的大脑网络的损害引起的(Boes等,2015)。Zhang等。 (2019)使用功能性磁共振成像(fMRI)扫描了情感网络中的杏仁核,以研究静止状态下左颞叶梗塞的PSD患者脑功能网络的特征。 他们发现PSD与损坏的脑网络的重组密切相关,该网络主要涉及杏仁核和前额叶皮层。 同样,Shi等人。 (2017)在静止状态下从扣带回皮质中收集了fMRI数据,并比较了带有和没有PSD的中风幸存者之间默认模式网络(DMN)的拓扑特性。 结果表明,PSD患者的前扣带回皮质与前额叶皮层,扣带回皮层和运动皮质的功能连通性显着降低。 然而,增强了前扣带回皮层与海马,帕拉希帕克宫,岛岛和杏仁核的功能连通性。 这些表明PSD的发病机理可能与DMN中的连通性改变有关。 Balaev等。Zhang等。(2019)使用功能性磁共振成像(fMRI)扫描了情感网络中的杏仁核,以研究静止状态下左颞叶梗塞的PSD患者脑功能网络的特征。他们发现PSD与损坏的脑网络的重组密切相关,该网络主要涉及杏仁核和前额叶皮层。同样,Shi等人。(2017)在静止状态下从扣带回皮质中收集了fMRI数据,并比较了带有和没有PSD的中风幸存者之间默认模式网络(DMN)的拓扑特性。结果表明,PSD患者的前扣带回皮质与前额叶皮层,扣带回皮层和运动皮质的功能连通性显着降低。然而,增强了前扣带回皮层与海马,帕拉希帕克宫,岛岛和杏仁核的功能连通性。这些表明PSD的发病机理可能与DMN中的连通性改变有关。Balaev等。(2018)进一步证明了PSD患者的DMN和显着性网络都发生了变化。在另一项静止状态fMRI研究中,Egorova等人。(2018)发现,左侧背侧前额叶皮层与PSD患者的右上边缘回合之间的功能连通性大大降低,并且额心认知控制网络中连通性的下降与抑郁症的严重程度呈正相关。通常,这些研究发现PSD患者的前额叶皮层,杏仁核或海马区域的脑网络连通性异常。然而,对静息状态的大脑网络特性进行了最多的研究,此外,从改变的大脑功能网络的角度来看,它们的结果尚无定论。
2024 年 3 月 16 日 — “大脑”,了解杏仁核,它在危险时帮助我们,但通常......一般孩子在电视和电脑前花费大量时间;不是......