1 Fraunhofer Cluster of Excellence Programmable Materials, 79108 Freiburg im Breisgau, Germany 2 Fraunhofer Institute for Mechanics of Materials IWM, 79108 Freiburg im Breisgau, Germany 3 Lightweight Systems, Saarland University, 66123 Saarbrucken, Germany 4 Fraunhofer Institute for Integrated Circuits IIS, 91058德国Erlangen 5 Fraunhofer机床和成立技术IWU研究所,德累斯顿,德累斯顿,6弗劳恩霍夫非造成的测试研究所IZFP IZFP,66123,德国萨尔布鲁肯,德国 *通信 *通信:); sarah。fincher@izfp.fraunhofer.de(s.c.l.f.)†当前地址:Deggendorf理工学院应用计算机科学学院,德国Deggendorf 94469。‡当前地址:复杂材料研究所,莱布尼兹·伊夫·德累斯顿(Leibniz ifw Dresden),德国德累斯顿(Dresden),德国。
钛合金具有高强度重量比、高耐腐蚀性和高熔点等优异性能,已广泛应用于航空航天工业。然而,据推测,通过对钛合金进行涂层处理,可以进一步提高其性能,使其更耐超高速撞击。早期的实验研究表明,用 Ti/SiC 金属基纳米复合材料 (MMNC) 涂覆 Ti-6Al-4V 基材可提高复合材料的抗超高速撞击性能。涂层中 SiC 的体积分数为 7%。这些实验是使用光滑粒子流体动力学 (SPH) 建模方法模拟的。Ti-6Al-4V 基材和 Lexan 弹丸使用了 Johnson-Cook 材料模型。由于缺乏对 MMNC 的详细机械特性,因此使用了双线性弹塑性材料模型来模拟涂层。在本研究中,进行了单参数敏感性分析,以通过与实验弹坑体积的比较来了解 SPH 模型的敏感性。双线性弹塑性材料模型的参数包括弹性模量、泊松比、屈服强度、切线模量和失效应变。对于体积分数为 35% SiC 的 Ti/SiC 金属基纳米复合材料 (MMNC),这些参数的变化范围为各自基准值的 ±5% 和 ±10%,并且可以获得不同应变率下的应力-应变曲线。这些值适用于整个测试速度范围。利用敏感性分析中的参数,结果表明,当没有实验数据时,可以提高 MMNC 的 SPH 建模精度。结果还表明,双线性弹塑性材料模型可用于高应变率下的 MMNC 涂层。
根据任何部件定制树脂和工艺 生成材料模型 树脂系统的精确流变动力学数据用于生成投射到 CAD 数据上的材料模型。这样可以预测复合材料部件上每个点的材料加工和固化过程中的材料行为。
摘要 空军研究实验室增材制造建模挑战系列的挑战 4 要求参赛者根据 IN625 试件的实验数据和广泛表征,预测几种特定挑战晶粒在拉伸载荷期间的晶粒平均弹性应变张量。在本文中,我们介绍了解决此问题的策略和计算方法。在比赛阶段,直接使用来自实验的特征化微观结构图像,通过基于遗传算法的材料模型识别方法预测某些挑战晶粒的机械响应。随后,在比赛后阶段,引入了一种基于适当广义分解 (PGD) 的降阶方法来改进材料模型校准。这种数据驱动的降阶方法非常有效,可用于识别力学和材料科学领域中的复杂材料模型参数。已经报告了原始预测和重新校准的材料模型的绝对误差结果。预测表明,整体方法能够处理局部响应识别的大规模计算问题。重新校准的结果和加速表明使用 PGD 进行材料模型校准的前景看好。
由于银烧结具有优异的键合质量和较高的操作温度,它在电子封装领域受到越来越多的关注。然而,烧结接头的机械性能在很大程度上取决于制造参数,如烧结温度、压力或银浆中的有机溶剂。因此,这种材料的机械特性是一项具有挑战性的任务。在本文中,建立了烧结银的塑性和蠕变的统一本构方程。因此,特别关注孔隙率对机械性能的影响。通过在恒定烧结条件下制备的样品进行的机械测试验证了模型的假设。模型参数适用于在拉伸模式、剪切模式和应力松弛条件下进行的测试结果。该材料模型通过用户子程序 UMAT 和 VUMAT 在商业软件 ABAQUS 中实现。总之,本构材料模型可以作为电子封装中银烧结接头可靠性预测的先决条件。
4.1 几何形状………………………………………………………………………………....... 32 4.2 材料模型………………………………………………………………………………...…... 33 4.3 接触建模…………...………………………………………………………..…………....34 4.4 风扇叶片的预加载………………………………………………....………..………... 34 4.5 鸟撞击模型设置………………………………………………………………..…….. 35 4.6 4 磅鸟撞击分析………………………………………………………...………….. 36 4.7 8 磅鸟撞击分析…………………………...……………………………………….. 39
基于过去几年获得的PCCL-K1的能力,其在2025 - 2028年资金期间的科学工作旨在卓越的卓越领域,例如动态聚合物网络,多烯烃在管道应用中的循环使用,在弹性器中恢复弹性的循环效果和浪费性的浪费,可靠的浪费,可靠的浪费,可靠地定位,可靠地定期浪费,浪费的浪费,并将其恢复到循环范围。聚合物在极端条件下的性能和终身特征,虚拟产品开发和评估由AI(机器学习)以及可靠的材料模型和多物理模拟工具实现。
CAE是JSP业务成功的重要组成部分。在密歇根州麦迪逊高地的JSP北美总部的一支小型团队,使用ANSYS LS-DYNA软件进行了所有公司的CAE工作,以进行各种静态和动态分析。这些CAE研究用于开发最终产品以及用于制造产品的工具(或模具)的优化。作为其客户支持承诺的一部分,该集团还为每个客户提供了CAE材料模型。“客户可以将这种模型纳入自己的设计和工程工作中,” JSP的首席产品开发工程师Nurul Huda说。“例如,汽车客户可以预测其保险杠设计将如何以各种速度处理碰撞的影响。”