摘要 开发一种先进的人工智能光电信息系统,精确模拟光子痛觉感受器,类似人类视觉痛觉通路的激活过程,至关重要。可见光到达视网膜,供人类视觉感知,但过度照射会对附近组织造成损伤,但可见光引发痛觉感受器的报道相对较少。本文引入一种二维天然缺陷III-VI族半导体β-In 2 S 3,利用其宽光谱响应,包括本征缺陷带来的可见光,用于可见光触发的人工光子痛觉感受器。该装置在可见光激发下的响应模式与人眼非常相似。它完美地再现了人类视觉系统的痛觉特征,例如“阈值”、“放松”、“不适应”和“敏感化”。其工作原理归因于与In 2 S 3 纳米片中本征空位相关的电荷捕获机制。这项工作为宽带人工光子伤害感受器提供了一种有吸引力的材料系统(本征缺陷半导体)。
碳化硅电力电子代表了下一代技术,该技术已在更紧凑的外形下以更高的电压和更高的频率运行,在广泛的产品中展示了显著的整体能效改进。它们已用于著名的高端应用,包括电动汽车、工业、电气化铁路和风能电力电子,以及电网传输和电动汽车充电基础设施。该项目的目的是扩大和商业化一种新型的基于激光的制造技术,用于制造碳化硅晶片,碳化硅晶片是构建碳化硅电力电子的基本构件。成功采用了初始概念验证原型,并将其构建成一条完整的生产线,展示了低速率的初始生产。该项目已经证明,该技术有可能实现零材料损失,并且每个晶片的产量在几分钟内即可完成。这将大大降低导电碳化硅基板的成本,从而使这种材料系统经过验证的有益特性能够应用于各种应用的先进下一代电力电子中。
短波红外线(SWIR)是基于元图的纳米光谱中电磁频谱的一个不流失的部分,尽管它在传感和成像应用中具有战略意义。这主要归因于缺乏在此范围内量身定制光线与形式相互作用的材料系统。在此处,该限制得到了解决,并在SWIR频率下启用了偏振诱导的偏振诱导的FANO共振控制。该平台由2D SI/GE 0.9 SN 0.1 CORE/SHELL NANOWIRE ARRAY上的硅晶片上的阵列组成。通过调整光极极化,可以表明,由于电动和磁性偶极子竞争中引起的FANO共振,可以对跨表面的反射进行有效的设计。在高索引纳米线阵列中光学诱导的偶极子的干扰是额外的自由度,以量身定制方向散射和光流,同时启用急剧极化的谐振。在纳米传感器中利用了这种固定性,可在周围培养基的折射率上有效检测10-2的变化。
利用人工缺陷技术,我们可以调整许多二维 (2D) 层状材料的能带结构和传输特性。一种原型材料系统是反点石墨烯片,其中周期性孔隙是使用纳米级聚焦离子或电子束制成的。在这里,我们研究了具有不同孔隙半径和孔隙间距的反点石墨烯样品的电导率、热电势以及冷却和制冷的有效速率。我们使用了一种考虑传输对载流子能量的敏感性的计算方法,可用于描述扩散、弹道和量子跳跃状态下的弹性和非弹性散射。我们发现,与一些传统方法相比,我们使用新计算方法得到的结果与实验数据更加一致。同样有趣的是,优化的冷却和制冷的有效速率对孔隙间距和孔隙半径的分布变化非常稳健,这意味着易于工业化和廉价制造。同样的分析和研究也可以扩展到许多其他层状材料,包括过渡金属二硫属化物(TMD)、蓝色磷烯和碲烯。
摘要 :GaAs 基材料系统因可承载具有出色光学特性的 InAs 量子点 (QD) 而闻名,这些量子点的发射波长通常为 900 nm 左右。插入变质缓冲区 (MMB) 可以将这种发射转移到以 1550 nm 为中心的具有技术吸引力的电信 C 波段范围。然而,常见 MMB 设计的厚度(> 1 𝜇 m)限制了它们与大多数光子谐振器类型的兼容性。在这里,我们报告了一种新型 InGaAs MMB 的金属有机气相外延 (MOVPE) 生长,该 MMB 具有非线性铟含量渐变分布,旨在在最小层厚度内最大化塑性弛豫。这使我们能够实现晶格常数的必要转变并为 180 nm 内的 QD 生长提供光滑的表面。展示了沉积在此薄膜 MMB 顶部的 InAs QD 在 1550 nm 处的单光子发射。通过纳米结构技术将新设计集成到靶心腔中,证明了新设计的强度。
这些材料在激光中被广泛应用,包括作为激光器中的活性介质[3-5]、作为量子信息技术的纯单光子和纠缠光子对源[6]、以及作为新型纳米存储器件的构建块。[7-9] 特别是 InAs/InP 量子点,由于其与 1.55 μ m 的低损耗电信 C 波段兼容,目前作为单光子发射器非常有吸引力。[10,11] 金属有机气相外延 (MOVPE) 中的液滴外延 (DE) 是一种新近且非常有前途的 QD 制造方法,因为它结合了大规模外延技术和多功能外延方法。[12-15] 这是一种相对较新的工艺,其生长动力学尚未完全了解,特别是对于与电信波长兼容的 III-V 材料系统,例如 InAs/InP。因此,它在制造用于广泛应用的电信 QD 方面具有巨大的发展潜力。此外,使用 InP 作为基质材料可以实现 InAs 量子发射体的生长,而无需任何额外的变质缓冲剂(例如 AlInAs/GaAs)。[16 – 18]
新课程代码和名称 MS7027 - 聚合物表征的高级方法 课程详情 课程内容摘要(请注意,所提供的信息也将上传到网络供大家查看) 如果没有对聚合物的化学组成、分子结构、超分子组织、形态、大小和形状、物理和化学性质以及它们的热稳定性、环境稳定性和化学稳定性、热力学行为、熔体流变性和加工性能以及许多其他物理和化学参数的了解,就不会存在现代聚合物材料科学、塑料技术与工程和相关聚合物工业。因此,聚合物分析和表征一直是现代有机材料的一个有利领域。因此,有大量的教科书和参考书专门讨论这个主题也就不足为奇了。然而,鉴于物理技术、ICT 工具、自动化、纳米技术仪器的迅速发展,以及材料系统复杂性的增加以及小型化/高通量实验,该领域发生了重大的范式转变。因此,在高级研究生课程中,强调当前进展、同时以既定方法为基础的课程具有其地位。引入这门课程的理由
课程说明微电动设备和电路设计师长期以来一直在寻求结合带隙工程提供的卓越运输特性和设计灵活性(如在GAAS和INP等复合半导体中常规实践),以及高产量和较低的常规硅(SI)制造成本。随着介绍外延硅果(Sige)合金,这一梦想终于成为现实。SIGE异质结双极晶体管(SIGE HBT)是在SI材料系统中实现的第一个实用带段的实用设备。The first functional SiGe HBT was demonstrated in 1987, and the technology has matured rapidly, at present achieving a unity-gain cutoff frequency above 700 GHz, circuit delays below 2 picoseconds, and integration levels sufficient to realize a host of record-setting digital, analog, RF, mm-wave, and sub-mm-wave circuits.自然兼容,将SIGE HBT与最佳的SI CMO组成以形成SIGE HBT BICMOS技术,这显然适合于解决新兴的性能受限,高度集成的系统,目前正在商业和国防部门在全球范围内追求。
引发的化学蒸气沉积(ICVD)代表了一种用于生产聚合物薄膜的新技术,尤其是对于很难通过召开方式处理的材料,例如polytetrafluoroethelene(ptfe,ptfe,commorly com com com com com com com necly neteflon®)。在ICVD过程中,有机前体气体在热表面上热分解以产生单体自由基。这些自由基通过启动和传播步骤聚合,以在底物表面形成所需材料。我们证明了使用ICVD技术在各种底物上创建PTFE表面,从纳米级到宏观”。我们表明,在复杂的几何形状上,涂料可以使涂料变得超薄且高度奇异,从而为从医疗设备到纺织品的应用带来了重大好处。该过程对于大面积和移动的Web底物也非常可扩展,并且由于气体利用率的高效,经济性良好。可以将其扩展到其他材料系统,包括硅酮聚合物及其共聚物,以及结合其他功能,例如环氧基团。在许多商业应用中,包括内陆,医疗设备,纺织品和消费者光学器件都有很大的部署机会。我们将详细讨论沉积过程,以及GVD的商业化计划。
Mohamed Benyoucef, h Yong-Heng Huo, b,c Sven Höfling, f Qiang Zhang, b,c,d Chao-Yang Lu, b,c,i, * 和 Jian-Wei Pan b,c, * a 中国科学技术大学,网络空间安全学院,合肥,中国 b 中国科学技术大学,合肥微尺度物质科学国家实验室,现代物理系,合肥,中国 c 中国科学技术大学,中科院量子信息与量子物理卓越中心,上海,中国 d 济南量子技术研究所,济南,中国 e 中国科学院,上海微系统与信息技术研究所,信息功能材料国家重点实验室,上海,中国 f 维尔茨堡大学,技术物理,物理研究所和威廉康拉德伦琴复杂材料系统中心,维尔茨堡,德国 g 奥尔登堡大学,物理研究所,德国奥尔登堡 h 卡塞尔大学纳米结构技术与分析研究所,CINSaT,德国卡塞尔 i 上海纽约大学-华东师范大学物理研究所,中国上海