随着电动汽车和大规模储能系统的开发,现有的商业锂离子电池(LIB)越来越无法满足市场需求。出于这个原因,研究人员探索了各种新型材料系统,以增加电池的能量密度,例如基于合金的阳极,1,2 Li金属阳极,3,4 sul sul sul de-de-de-de-de-de-de de de基基阳极,5 - 7和基于Li-rich的锰的阴极。8,9在其中,硅(SI)被认为是商业石墨阳极的最佳替代品之一,因为它具有高理论能力(4200 mAh g -1)和适当的工作电压(〜0.4 V,vs.li/li/li +)。10然而,静电后,硅的体积膨胀高达300%,而Li +的反复插入和提取诱导了表面上的机械应力和变形,从而导致颗粒的粉碎。11,体积变形会破坏相邻硅颗粒之间或颗粒与当前收集器之间的电气接触,而活性材料可能完全从收集器脱离。10,12此外,硅表面上的固体电解质相(SEI)反复破裂并因硅的体积变形而导致,消耗了大量的电解质和活性锂。13随着时间的流逝,
Si的光子集成电路,其中光学组件是单层集成在SI集成电路上的,有望在未来的信息和通信技术基础架构中占主导地位。由主动组件和被动组件组成的SI光子(SIPH)技术已经在大量应用中广泛使用,范围从DataCom到检测系统。最近,SIPH进入了集成量子技术,光学计算和人工智能的新兴领域中的低温应用技术平台。尽管如此,可以仅使用组IV半导体制造的有效的电泵光源仍然是一个重大挑战。通过将半金属的替代掺入替换为GE晶格而获得的新型GESN和Sigesn半导体可获得比其他组IV型半导体合金提供的一些优势:通过正确选择合金组成和外部材料,这些材料将这些材料转化为基本直接型号的单个型号bardgap semiciccaptors。第四组通常缺少的此属性使(SI)GESN系统对有效的光源非常有吸引力。使用该材料系统,近年来达到了IV激光的主要里程碑,例如光学抽水散装和多Quantum Wells(MQW)激光器的激光器,直至室温。
水凝胶的独特性质使得设计栩栩如生的软智能系统成为可能。然而,刺激响应型水凝胶仍然受到驱动控制有限的困扰。直接电子控制电子导电水凝胶可以解决这一难题,并允许与现代电子系统直接集成。本发明展示了一种具有高平面电导率的电化学控制纳米线复合水凝胶,可刺激单轴电化学渗透膨胀。该材料系统允许在仅 -1 V 的电压下精确控制形状变形,其中水凝胶本体的电容充电导致高达 300% 的单轴膨胀,这是由于每个电子离子对约 700 个水分子的进入引起的。该材料在关闭时会保持其状态,这对于电调谐膜来说是理想的选择,因为膨胀和中孔率之间的固有耦合使得能够通过电子控制渗透性以实现自适应分离、分馏和分布。用作电化学渗透水凝胶致动器,它们可实现高达 0.7 MPa 的电活性压力(1.4 MPa vs 干燥)和 ≈ 150 kJ m − 3 的工作密度
摘要 — 已经开发出一种支持新型微电子集成范式的工具,通过微同轴导线键合直接建立组件之间的互连。该工具的近期用例是促进高带宽系统的快速原型设计。当进一步成熟时,它将能够以最短的设计时间快速集成具有数百或数千个互连的复杂系统。总直径在 50 到 100 毫米之间的同轴导线的自动剥离和键合带来了一系列工艺挑战,对导线的材料系统和键合工具提出了有趣的要求。本研究回顾了 Draper 目前正在开发的一种微同轴键合系统,该系统能够剥离、送料和键合微同轴导线。该系统利用电火焰熄灭和热回流的组合分别剥离外部金属屏蔽层和聚合物介电层。它利用旋转送丝机制精确控制导线位置,从而可以确定预定的导线长度。回顾了电线、工具和软件控制架构设计的进展。
摘要:机器学习 (ML) 已显示出加速各种材料系统合成规划的潜力。然而,由于缺乏用于开发材料合成 ML 工作流程的系统方法或启发式方法,许多材料科学家仍然无法使用 ML。在这项工作中,我们报告了一种选择 ML 算法来训练预测纳米材料合成结果的模型的方法。具体来说,我们开发并使用了一个自动化批量微反应器平台来收集大量 CdSe 量子点热注射合成结果的实验数据集。此后,该数据集用于训练使用各种 ML 算法预测合成结果的模型。针对不同大小和添加不同噪声量的实验数据集,比较了这些算法的相对性能。基于神经网络的模型显示出对吸收和发射峰的最准确预测,而预测半峰全宽的级联方法被证明优于直接方法。SHapley Additive exPlanations (SHAP) 方法用于确定不同合成参数的相对重要性。我们的分析表明,SHAP 重要性分数高度依赖于特征选择,并强调了开发固有可解释模型以从材料合成的 ML 工作流程中获取见解的重要性。
基于非富勒烯受体的有机太阳能电池(NFA-OSC)现在正朝着 20% 的能量转换效率的里程碑迈进。为实现这一目标,最小化所有损耗通道(包括非辐射光电压损耗)似乎是必要的。在很大程度上,非辐射复合被认为是材料固有的特性,这是由于振动引起的电荷转移 (CT) 状态的衰减或它们向三重态激子的反向电子转移。本文表明,使用一种具有 2,2,6,6-四甲基哌啶-1-氧基侧基的新型共轭硝基自由基聚合物 (GDTA) 作为添加剂可以提高基于不同活性层材料的 NFA-OSC 的光伏性能。添加 GDTA 后,开路电压 (V OC )、填充因子 (FF) 和短路电流密度 (J SC ) 同时改善。该方法应用于多种材料系统,包括最先进的供体/受体对,其性能从 15.8% 提高到 17.6%(对于 PM6:Y6)并从 17.5% 提高到 18.3%(对于 PM6:BTP-eC9)。然后,讨论了观察到的改进背后的可能原因。结果表明 CT 状态被抑制为三重态激子损失通道。这项工作提出了一种简便、有前途且通用的方法来进一步提高 NFA-OSC 的性能。
硼酸酯连接的 2D COF 薄膜具有低介电常数,室温下沿层状孔隙的热导率为 ∼ 1 W m − 1 K − 1(图 1),标志着材料设计的新范式,该范式结合了相对较高的热导率和较低的质量密度。在此,我们通过证明 3D COF 的相互渗透通过超分子相互作用显着提高其热导率,同时保持其低弹性模量,进一步增强了 COF 的卓越属性。这将互穿 COF 定位为具有机械柔性和导热性的轻质材料,这种物理特性的组合通常在大多数材料系统中都找不到,如图 1 所示。尽管过去已经合成了互穿或缠结的 3D COF 网络,18 – 23 但尚未研究交织多个 COF 晶格对所得物理特性(例如其机械和热特性)的影响。这与它们的近亲 MOF 形成了鲜明对比,在 MOF 中,互穿的影响不仅被证明会导致复杂结构的形成,24 – 27 而且与单个 MOF 晶格相比,还与增强的稳定性、增加的结构柔性和更高的气体吸附有关。28,29 此外,理想化的 MOF 的互穿还被证明可以通过额外的传热通道来提高其热导率。 30,31
磁转运(电导对外部磁场的响应)是揭示外来现象背后基本概念的重要工具,并在实现播种机应用方面起着关键作用。磁转运通常对磁场方向敏感。相比之下,很少见到电子传输的效果和各向同性调制,这在诸如全向感应等技术应用中很有用,尤其是对于原始晶体而言。这里提出了一种策略,以实现对电子传导对电子传导的极强调制,而磁场独立于场方向。GDPS是一种具有电阻率各向异性的分层抗铁磁半导体,它支持具有矛盾的各向同性巨大的巨型磁势敏感对磁性方向不敏感的场驱动的绝缘体到金属转变。这种各向同性磁阻起源于GD 3 +基于GD 3 +的半纤维f-Electron系统的接近零自旋 - 轨道耦合的组合效应以及GD原子中强的现场F - D交换耦合。这些结果不仅为具有非凡的磁转运提供了一种新型的材料系统,可为基于抗铁磁铁的超快和有效的旋转器设备提供缺失的块,而且还展示了设计具有高级功能的所需运输特性的磁性材料的关键成分。
21 世纪船舶轻量化 1.0 目标。 1.1 船舶建筑师的目标一直是建造能够满足服务和任务要求的最轻船舶。速度和稳定性一直是轻量化结构的传统驱动因素。在当今的环境中,降低燃料消耗和随之而来的二氧化碳排放正成为船舶设计的主要要求。造船商历来依靠他们熟悉的材料系统和结构布置来满足重量目标。轻型造船材料,如高强度钢、铝和复合材料,给设计界带来了意想不到的挑战。本项目的目标是记录船舶轻量化的最佳实践,并提供解决当前缺陷的策略。 1.2 本研究将利用船舶结构委员会作为行业智囊团的独特地位来影响资源分配和政府政策。建造更轻的船舶将使美国和加拿大海军更加灵活,他们的快速渡轮更具成本效益。此外,轻型船舶结构有可能通过高技能工作振兴北美的造船业。 2.0 背景。 2.1 北美造船业在使用轻型造船材料生产海上结构方面有着悠久的历史。成熟的休闲游艇建造业创造了一支稳定、高技能的劳动力队伍和支持
摘要 太赫兹 (THz) 超材料因其不寻常的吸收体而被开发用于 THz 传感、检测、成像和许多其他功能。然而,不寻常的吸收光谱会随着不同的入射角而变化。因此,我们设计并制作了一个具有金属-绝缘体-金属 (MIM) 结构超材料吸收体的焦平面阵列,以供进一步研究。使用 THz 时域光谱 (THz-TDS) 测量了入射角从 20° 到 60° 的吸收光谱,实验结果表明吸收光谱随入射角的变化而变化。本研究开发了一个用于提取吸收频率特性的基本分析非对称峰模型,以定量探索吸收体行为随入射角的变化。最好的结果是,使用此峰值模型可以轻松找到与最高吸收相对应的频率。实验数据与非对称峰模型的验证一致。此外,还发现了第二个将参数定量与入射角相关联的模型,可以预测吸收光谱的偏移和变化。根据二次模型推导,预测吸收光谱在特定入射角下具有谷状吸收曲线。所提出的提取方法的基本特征是它可以应用于任何基于物理的 MIM 超材料系统。这种模型将指导 THz 超材料吸收器、传感器、成像器等的设计和优化。
