通过每年一次的征集,最多将选出七位企业家,他们将在美国能源部先进制造办公室和田纳西河谷管理局的财政支持下,将他们的想法转化为能源、先进制造和综合电网公司。创新者将获得奖学金,包括长达两年的个人生活津贴、福利和旅行津贴,以及用于 ORNL 合作研究和开发的大量资金。
气体传感器为多个新市场打开了大门。气体传感器越来越多地融入物联网生态系统,用于监测室内和室外的空气质量——例如可穿戴设备、智慧城市项目、用于污染测绘的传感器网络、智能家居电子产品和汽车技术。利用先进气体传感技术的另一个关键趋势是呼吸分析,旨在通过检测呼出气体中的生物标志物进行非侵入性诊断。此外,人类和机器人辅助微创手术导管中的压力传感器需要为外科医生提供触觉反馈。微型超声波传感器为微创医学成像开辟了可能性。然而,要进入大脑和体内较小的动脉,需要进一步微型化,这对目前的压力传感器技术提出了挑战。
曲折。为了衡量范德华材料中摩擦的各种贡献,研究人员制作了几次 - 直径磁盘(滑块),并将其拖到由相同或相似材料制成的表面上。在滑块的蜂窝晶格(蓝色点)和基础表面(黄点)之间的不匹配来自其不同的旋转方向以及两者由不同元素制成时晶格间距的差异。组合创建了一个Moiré超级晶格,在该超晶格中,模式定期出现在注册表中。完全moiré瓷砖中原子的摩擦效应(圆的内部)取消。在滑块的边缘,瓷砖不完整(粉红色),因此取消是不完美的,并且是实质性的摩擦力结果。信用:Y. Li等。[1]
图2:(a)MRSF-TDDFT计算的工作流程,(b)分支分为三个不同的MRSF-TDDFT计算,具有从相同的KS轨道衍生的不同自旋状态,以及(c)基于两个不同电子状态的梯度计算,分支为同一MRSF-TDDDDFT FTDFT ENCELINC,所有使用MRSF-TDDDDFT FTD FTD FENT态,所有利用了Pyty-accce python-accce python-accce cess。
神经退行性疾病,包括阿尔茨海默氏症,帕金森氏症和ALS,构成了日益增长的全球健康挑战,但它们的分子机制仍被了解。最近的进步突出了蛋白质错误折叠,线粒体功能障碍,神经炎症和细胞外囊泡(EV)在疾病进展中所扮演的作用。evs正在成为细胞间通信的关键参与者,携带病理性蛋白质和核酸可能是生物标志物或治疗靶标。本期特刊欢迎提交评论和原始文章,探讨了有关驱动神经变性和创新治疗策略的分子机制,从基因疗法到基于EV的干预措施。
$ qjd \ dundqql 5dpdpxuwk \'lolsdq 6hshkul $ plq +rvvhlq 8qly 7vxnxed透明
摘要:这项全面的评论探讨了纳米杂交材料的最前沿,重点是在各种应用中的协调材料的整合,并引起了它们在柔性太阳能电池开发中的作用。以其独特的特性和多功能性为特征的基于材料的纳米杂化物,在从催化和感应到药物递送和能量存储等领域中引起了极大的关注。讨论调查了这些纳米杂化的合成方法,性质和潜在应用,强调了它们在材料科学中的多功能性。此外,该综述还研究了钙钛矿太阳能电池(PSC)中配位纳米杂交的整合,展示了它们增强下一代光伏设备的性能和稳定性的能力。叙事进一步扩展,以涵盖发光纳米杂化的合成,以实现生物成像目的以及层次的二维(2D)基于材料的纳米结构杂种用于储能和转换。探索最终在检查导电聚合物纳米结构的合成中,从而阐明了它们在药物输送系统中的潜力。最后但并非最不重要的一点是,本文讨论了柔性太阳能电池的尖端领域,强调了它们的适应性和轻巧的设计。通过对这些多样化的纳米杂化材料进行系统的检查,这项评论阐明了当前的最新,挑战和前景的状态,为材料科学,纳米技术和可再生能源领域的研究人员和从业人员提供了宝贵的见解。
随着热科学的最新进展,例如开发新的理论和实验技术,并发现了新的运输机制,这有助于重新审视振动热传导的基本原理,以制定更新的和知识的物理理解。模拟和建模方法的成熟度的越来越多,激发了利用这些技术来通过数字工程和多规模的电子热模型来快速改善和开发技术的愿望。考虑到这一愿景,这篇综述试图通过关注子领域之间通常未解决的关系来建立对热运输的整体理解,这对于多尺度建模方法至关重要。例如,我们概述了模式(计算)和光谱(分析)模型之间的关系。我们根据扰动方法和经典的基于透射率的模型将热边界电阻模型与热边界电阻模型相关联。我们讨论了晶格动力学与分子动力学方法之间的关系,以及最近出现的两通道传输框架,并连接了晶体样和无定形的热传导。在整个过程中,我们讨论了建模实验数据的最佳实践,并概述了这些模型如何指导材料级别和系统级设计。
“量子材料”的概念在各种科学和技术纪律中获得了突出的重要性,在这些纪律中,它们的量子现象(例如,纠缠,叠加,叠加,隧道和自旋轨道相互作用)推进了科学和技术的新兴领域,例如量子计算(Nielsen和Chuang,Chuang,Chuang,2000),Teleport(teleport)(teleport and teleport)(bennet and and and and and and and and et n.193),Eth。 2002年; Pirandola等,2020),感应(Degen等,2017),以及包括自旋奥梁型(Manchon等,2015),升温器(Bauer等人,2012年)的新型电子设备(Manchon等,2015) Schaibley等人,2016年),为新的全球商业市场提供了有效的驱动力。积极研究量子材料的科学家面临着各种挑战,这些挑战位于物理,材料科学和工程学的先锋方面。如果没有在世界各地工作的才华横溢的研究人员社区,包括诺贝尔奖获奖者到入门水平的学生,这些进步将是不可能的。该研究主题旨在强调那些处于这一重要领域最前沿的科学家。二氧化硅 - 硅硅质无定形界面(A -SIO 2 /Si)是硅设备的关键组成部分。Liu等。 报告第一原则计算,该计算检查应力对A -SIO 2 /Si(111)界面上P B缺陷的深度活化反应的影响,并且在A-SIO 2 /Si(100)界面上的P B1缺陷。 借助第一原则计算,Zhang等。 Liu等。Liu等。报告第一原则计算,该计算检查应力对A -SIO 2 /Si(111)界面上P B缺陷的深度活化反应的影响,并且在A-SIO 2 /Si(100)界面上的P B1缺陷。借助第一原则计算,Zhang等。Liu等。Liu等。他们的调查对工程实践很重要,因为它有助于促进对真实设备中性能变性的理解。提供了急需的理论基础,描述了-SIO 2 /Si中H 2 O和界面缺陷的相互作用(100)。量子材料的领域已扩大,以涵盖二维(2D)材料系统和相关的异质结构,其相互作用和基本反应性受范德华力支配。此外,由于潜在的信息处理和存储领域的潜在用途,越来越多的科学家将注意力引导到2D磁性材料。构建了Crgete 3 /Nio异质结模型,并在第一原则计算的帮助下研究了Crgete 3 /Nio界面的电气和磁性。可以通过将拓扑的基本定理和拓扑概念纳入声子的研究来开发,类似于拓扑电子领域所证明的。借助第一原则计算,李提出了
目的本研究旨在通过整合来自Litvar数据库,PubMed和GWAS目录的多个来源的数据来创建与营养相关的人类遗传多态性的全面和精心策划的数据集。该合并资源旨在通过提供可靠的基础来探索与营养相关性状相关的遗传多态性,以促进营养学的研究。方法我们开发了一个数据集成管道来组装和分析数据集。管道从Litvar和PubMed执行数据检索,数据合并以构建统一的数据集,全面网格列表的定义,通过网格查询该数据集以检索相关的遗传关联,并使用GWAS目录将输出交叉引用。结果结果数据集汇总了有关遗传多态性和与营养相关性状的广泛信息。通过网格查询,我们确定了与营养相关性状相关的关键基因和SNP。与GWAS目录的交叉引用提供了有关与这种遗传多态性相关的潜在影响或风险等位基因的见解。共发生的分析揭示了有意义的基因 - 基因相互作用,推进了个性化的营养和营养学研究。结论此处介绍的数据集合并并组织有关与营养相关的遗传多态性的信息,从而详细探讨了基因 - 迪特相互作用。该资源通过提供标准化和全面的数据集来推进个性化的营养干预措施和营养学研究。数据集的灵活性允许其应用于其他遗传多态性研究。