约翰·基里安:如果说得通的话,感觉就像昨天和很久以前一样。约翰·基里安这样描述他儿子得到改变人生的诊断结果的那一天。约翰·基里安:我还记得当时的具体情况,听到的那些话,这是你一生中永远不会忘记的事情之一。那是 17 年前的事了。约翰·基里安:萨姆在三岁时被诊断出患有癌症。对于约翰和他的妻子斯蒂芬妮来说,17 年来他们不知道儿子的未来会怎样。十七个生日……他们每个人都希望萨姆能活到下一个生日。迹象是存在的。但它们很微妙。萨姆在蹒跚学步时,发育情况与其他孩子不同:约翰·基里安:他只会坐,不会在正确的时间站起来。他是我们四个孩子中的第四个。所以我们非常了解孩子在什么年龄的表现。而且,我们也知道。嗯,孩子们发育的速度不同。所以我们并不太担心。甚至连萨姆的儿科医生一开始都没有发现任何问题。后来有一天,他们一家在家附近的公园玩耍时,萨姆摔断了腿。约翰·基利安:这就是我们最终得到的诊断结果。他的腿上打了六个星期的石膏,恢复起来很困难。我们去找了一位理疗师,试图为他寻求帮助。最后,她告诉我的妻子,“嘿,我觉得萨姆可能患有肌肉萎缩症。”大家好,我是乔丹·加斯-普雷,南加州大学健康新闻中心的成员。这是彭博媒体工作室和 Vertex Pharmaceuticals 的播客《针对最棘手的疾病》。
基因治疗中使用的载体是由经过改造的病毒制成的。如果一个人已经接触过与载体中使用的病毒相同的病毒,那么他或她可能已经对该病毒产生了抗体。这些预先存在的抗体可能会使某人不适合接受基因治疗,因为抗体会在载体进入人体时识别载体,就像抗体识别以前感染的病毒一样。
估计此信息收集的公共报告负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查此信息收集的时间。请将有关此负担估计或此信息收集的任何其他方面的评论(包括减轻此负担的建议)发送至国防部华盛顿总部服务处信息行动和报告局 (0704-0188),地址:1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息收集未显示当前有效的 OMB 控制编号,则任何人均不会因未遵守信息收集而受到任何处罚。请不要将您的表格寄回上述地址。1. 报告日期
治疗;诊断;症状;遗传学。1. 引言杜氏肌营养不良症 (DMD) 是一种 X 连锁隐性疾病,由编码肌营养不良蛋白的 DMD 基因突变引起。DMD 的病理特征是细胞骨架蛋白的完全缺失 [1]。DMD 的临床特征是进行性肌无力,肌肉脆性主要分布在近端肢体、颈部和胸部 [2]。DMD 是最常见的肌营养不良症,也是最常见的致命神经肌肉疾病之一,每 3,500 名新生男婴中就有 1 名患有此病 [3]。临床表现始于儿童早期,伴有进行性肌肉萎缩和无力,最终导致死亡。蛋白质缺陷在出生时就存在,但通常直到出生后第二年或第三年才会在临床上观察到并诊断出来。这种疾病最终导致患者在 12 岁左右无法行走,需要使用轮椅,肌肉无力导致严重的脊柱侧弯,并最终在 25 岁左右因心脏和/或呼吸衰竭而死亡,尤其是那些不选择呼吸机支持的患者 [2]。人类 DMD 基因位于 Xp21.2 位点,主要在骨骼肌中产生杆状细胞质结构蛋白,在心肌、平滑肌、脑神经细胞和视网膜中存在同工型 [4–6]。人类的 DMD 基因为 2.3 Mb,有 79 个外显子,产生 14 kb RNA 和 427 kDa 蛋白质 [5,7,8]。三分之一的 DMD 病例是由新生突变引起的,三分之二的病例有家族史,通常是女性携带者 [9]。贝克尔肌营养不良症 (BMD) 是一种不太严重的肌营养不良症,症状与 BMD 相似,但进展较慢且不太严重 [10]。统计分析发现,DMD 的全球患病率是 BMD 的三倍 [11]。全球 DMD 患病率约为每 100,000 名男性中有 7.1 人,而普通人群中每 100,000 人中有 2.8 人。DMD 的发病率为每 100,000 人中有 19.8 人
杜氏肌营养不良症 (DMD) 是一种由肌营养不良蛋白基因 ( DMD ) 突变引起的致命神经肌肉疾病。之前,我们应用 CRISPR-Cas9 介导的“单切”基因组编辑来纠正 DMD 动物模型中的多种基因突变。然而,有效的体内基因组编辑需要高剂量的腺相关病毒 (AAV),这给临床应用带来了挑战。在本研究中,我们将 Cas9 核酸酶包装在单链 AAV (ssAAV) 中,将 CRISPR 单向导 RNA 包装在自互补 AAV (scAAV) 中,并将这种双 AAV 系统递送到 DMD 小鼠模型中。有效基因组编辑所需的 scAAV 剂量至少比 ssAAV 低 20 倍。接受全身治疗的小鼠显示肌营养不良蛋白表达恢复,肌肉收缩力改善。这些发现表明,使用 scAAV 系统可以显著提高 CRISPR-Cas9 介导的基因组编辑的效率。这代表着基因组编辑在 DMD 治疗转化方面取得了重要进展。
杜氏肌营养不良症 (DMD) 是一种致命的 X 连锁神经肌肉疾病,由肌营养不良蛋白缺失引起,而肌营养不良蛋白对于肌肉纤维完整性至关重要。肌营养不良蛋白缺失会导致肌纤维反复损伤、慢性炎症、进行性纤维化和肌肉干细胞功能障碍。到目前为止,DMD 仍无法治愈,治疗标准主要限于通过糖皮质激素治疗缓解症状。目前的治疗策略可分为两类。肌营养不良蛋白靶向治疗策略旨在恢复肌营养不良蛋白的表达和/或功能,包括基于基因、基于细胞和蛋白质替代疗法。另一类治疗策略旨在通过针对下游病理变化(包括炎症、纤维化和肌肉萎缩)来改善肌肉功能和质量。本综述介绍了这两条策略的重要发展,特别是那些已进入临床阶段和/或具有巨大临床转化潜力的策略。本文介绍了每种药物在临床前或临床研究中的原理和功效。此外,还对 DMD 患者的基因谱进行了荟萃分析,以了解 DMD 的分子机制。
杜氏肌营养不良症 (DMD) 是一种严重的、渐进性的、最终致命的疾病,会导致骨骼肌萎缩、呼吸功能不全和心肌病。肌营养不良蛋白基因被确定为 DMD 发病机制的核心,这让人们认识到肌肉膜和参与膜稳定性的蛋白质是该疾病的焦点。数十年来,人类遗传学、生物化学和生理学研究的经验教训最终确立了肌营养不良蛋白在横纹肌生物学中的多种功能。在这里,我们回顾了 DMD 的病理生理基础,并讨论了目前已接近或正在开展人体临床试验的 DMD 治疗策略的最新进展。本综述的第一部分重点介绍 DMD 以及导致膜不稳定、炎症和纤维化的机制。第二部分讨论了目前用于治疗 DMD 的治疗策略。这包括重点概述通过肌营养不良蛋白基因替换、修改、修复和/或一系列肌营养不良蛋白独立方法纠正基因缺陷的方法的优势和局限性。最后一部分重点介绍了目前正在临床试验中的 DMD 的不同治疗策略。
来自杜波维茨神经肌肉中心 (FM、MC、AYM)、NIHR 大奥蒙德街医院生物医学研究中心、大奥蒙德街儿童健康研究所、伦敦大学学院和英国大奥蒙德街医院信托基金;波士顿分析集团 (JS、GS、HL、MJ、ID);马萨诸塞州剑桥协作轨迹分析项目 (JS、SJW);加州大学戴维斯分校物理医学与康复系和儿科 (CM);比利时鲁汶大学医院儿童神经病学 (NG);荷兰莱顿大学医学中心神经病学系 (EHN);伍斯特马萨诸塞大学医学院儿科 (BW);英国牛津大学儿科系 MDUK 牛津神经肌肉中心 (LS) 和比利时列日大学 CHU 儿科分部列日神经肌肉中心 (LS);英国纽卡斯尔大学及纽卡斯尔医院 NHS 基金会约翰沃尔顿肌肉萎缩症研究中心 (VS, MG);荷兰奈梅亨拉德堡德大学医学中心唐德斯神经科学中心康复系 (IJMdG);俄亥俄州辛辛那提儿童医院医学中心 (CT) 和辛辛那提大学医学院 (CT);意大利罗马天主教大学 Fondazione Policlinico Gemelli IRCCS 儿科神经病学系 (EM);以及荷兰莱顿大学医学中心人类遗传学系 (AA-R.)。
杜氏肌营养不良症 (DMD) 是最常见的肌营养不良症,主要影响男性儿童。这种遗传性疾病是由肌营养不良蛋白基因突变引起的,导致骨骼肌无法产生肌营养不良蛋白。1 随着 DMD 患者年龄的增长,他们会经历快速进行性肌肉无力,最终导致失去独立行走能力。尽管研究仍在进行中,但目前尚无治愈 DMD 的方法;可以使用皮质类固醇、基因编辑疗法和基于细胞的方法等治疗方法来减缓病情进展和缓解症状。2 虽然近几十年来 DMD 患者的预期寿命有所提高,但心脏和呼吸衰竭仍然是死亡的主要原因 2 。当前的许多临床努力旨在通过恢复肌营养不良蛋白的产生来改善肌肉再生和功能,以解决潜在的遗传缺陷。