a 英国伦敦大奥蒙德街医院基金会、NIHR 大奥蒙德街医院生物医学研究中心、大奥蒙德街儿童健康研究所、伦敦大学学院和大奥蒙德街医院信托基金会杜博维茨神经肌肉中心 b 美国马萨诸塞州波士顿分析集团公司 c 美国马萨诸塞州剑桥协作轨迹分析项目 d 比利时鲁汶大学医院儿童神经病学部 e 美国马萨诸塞州伍斯特马萨诸塞大学医学院儿科系 f 美国俄亥俄州辛辛那提辛辛那提儿童医院医疗中心和美国俄亥俄州辛辛那提辛辛那提大学医学院 g 意大利罗马天主教大学 Fondazione Policlinico Gemelli IRCCS 儿科神经病学系 h 英国牛津神经肌肉中心、英国牛津大学儿科系和比利时列日神经肌肉中心、CHU 和列日大学儿科分部 i 莱顿大学医学中心荷兰莱顿 j 英国纽卡斯尔大学约翰沃尔顿肌肉萎缩症研究中心 k 荷兰奈梅亨拉德堡德大学奈梅亨医学中心、唐德斯神经科学中心、康复系 l 美国加利福尼亚州萨克拉门托加利福尼亚大学戴维斯分校物理医学与康复系及儿科系
杜氏肌营养不良症 (DMD) 是肌营养不良症最严重的一种形式,会导致进行性肌肉萎缩,最终因心肌病导致过早死亡。在多年的研究中,杜氏肌营养不良症的解决方案仍然是姑息性的。尽管包括临床试验在内的许多研究都提供了有希望的结果,甚至批准了药物,但治疗窗口仍然很小,还有许多缺点需要解决。从逻辑上讲,用基因疗法对抗由单一基因突变引起的杜氏肌营养不良症是合理的。然而,作为一种治疗选择,基于基因的策略并不陌生,存在缺点和局限性,例如肌营养不良蛋白基因的大小和载体引发免疫反应的可能性。在这篇系统综述中,我们旨在全面汇编基于基因的治疗策略,并在解决其当前局限性的同时,批判性地评估其相对于其有效性和可行性的方法。我们使用关键词“ DMD AND Gene 或 Genetic AND Therapy 或 Treatment ” 回顾了过去十年(2012 年 - 2021 年)在 Science Direct、PubMed 和 ProQuest 上发表的论文。
利什曼病是一种由利什曼原虫属的原生动物寄生虫引起的传染病,目前尚无获批的人类疫苗。感染以物种特异性的方式定位到不同的组织,由杜氏利什曼原虫和婴儿利什曼原虫引起的内脏疾病对人类最为致命。尽管利什曼原虫属寄生虫主要在细胞内,但可以通过给狗接种婴儿利什曼原虫前鞭毛体培养物分泌产物的复杂混合物来预防内脏疾病。由于细胞外寄生虫蛋白可直接与疫苗诱导的宿主抗体接触,因此它们是良好的亚单位疫苗候选物,因此我们在此尝试发现对体外生长和宿主感染至关重要的蛋白质,目的是确定亚单位疫苗候选物。通过对杜氏利什曼原虫基因组进行计算机分析,我们确定了 92 个编码蛋白质的基因,这些蛋白质预测会通过单个跨膜区或 GPI 锚点分泌或外部锚定在寄生虫膜上。通过选择一种同时表达荧光素酶和 Cas9 核酸酶的转基因杜氏利什曼原虫,我们系统地尝试通过 CRISPR 基因组编辑靶向所有 92 个基因,并确定了体外生长所需的四个基因。对于 55 个基因,我们用每种突变寄生虫感染了小鼠群,并通过使用生物发光成像纵向量化寄生虫血症,结果显示 9 个基因有减毒感染的证据,尽管所有基因最终都建立了感染。最后,我们将两个基因表达为全长可溶性重组蛋白,并在小鼠临床前感染模型中将它们作为亚单位疫苗候选物进行测试。这两种蛋白质都对脾脏感染的不受控制的发展产生了显著的保护作用,值得进一步研究作为针对这种致命的热带传染病的亚单位疫苗候选物。
估计此信息收集的公共报告负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查此信息收集的时间。请将有关此负担估计或此信息收集的任何其他方面的评论(包括减轻此负担的建议)发送至国防部华盛顿总部服务处信息行动和报告局 (0704-0188),地址:1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息收集未显示当前有效的 OMB 控制编号,则任何人均不会因未遵守信息收集而受到任何处罚。请不要将您的表格寄回上述地址。1. 报告日期
与传统转化方式相比,包含预组装的Cas9蛋白和sgRNA的RNP复合物已在动物、植物、人类细胞和微藻等各种宿主中实现了高效的基因组编辑(DiNapoli等,2020;Xing等,2014;Kim等,2014;Liang等,2019)。由于不需要密码子优化或特定启动子,RNP递送可方便、快速地应用于不同物种。此外,由于Cas蛋白在细胞内被内源性蛋白酶降解,RNP可以减少脱靶效应和嵌合现象,对细胞的细胞毒性较小(Nomura等,2019)。同时,由于不存在外来DNA序列,基因编辑的动植物可以免受转基因监管(Kanchiswamy等,2015)。因此,
杜氏肌营养不良症 (DMD) 是一种致命的 X 连锁神经肌肉疾病,由肌营养不良蛋白缺失引起,而肌营养不良蛋白对于肌肉纤维完整性至关重要。肌营养不良蛋白缺失会导致肌纤维反复损伤、慢性炎症、进行性纤维化和肌肉干细胞功能障碍。到目前为止,DMD 仍无法治愈,治疗标准主要限于通过糖皮质激素治疗缓解症状。目前的治疗策略可分为两类。肌营养不良蛋白靶向治疗策略旨在恢复肌营养不良蛋白的表达和/或功能,包括基于基因、基于细胞和蛋白质替代疗法。另一类治疗策略旨在通过针对下游病理变化(包括炎症、纤维化和肌肉萎缩)来改善肌肉功能和质量。本综述介绍了这两条策略的重要发展,特别是那些已进入临床阶段和/或具有巨大临床转化潜力的策略。本文介绍了每种药物在临床前或临床研究中的原理和功效。此外,还对 DMD 患者的基因谱进行了荟萃分析,以了解 DMD 的分子机制。
摘要 杜氏肌营养不良症是一种 X 连锁隐性遗传性单基因疾病,因无法产生肌营养不良蛋白而引起。在大多数患者中,由于开放阅读框的破坏性突变,肌营养不良蛋白的表达丧失。尽管迄今为止在大量不同的治疗方法上做出了努力,但可用于治疗杜氏肌营养不良症的治疗方法仍然只是缓解和支持疾病症状,而不是治愈疾病。CRISPR/Cas9 技术的出现彻底改变了基因组编辑的范围,被认为是有效基因组工程的先驱。通过 CRISPR 删除或切除基因内 DNA,以及通过反义寡核苷酸诱导的 DNA 水平外显子跳跃的类似策略,是纠正杜氏肌营养不良症基因的新颖且有前途的方法,它们可以恢复截短但有功能的肌营养不良蛋白的表达。此外,CRISPR/Cas9 技术还可用于治疗 DMD,方法是去除重复的外显子、通过基于 HDR 的途径精确校正致病突变以及诱导补偿蛋白(如 utrophin)的表达。在本研究中,我们简要介绍了 DMD 的分子遗传学和 DMD 基因治疗的历史概述。我们特别关注了用于治疗 DMD 的 CRISPR/Cas9 介导的治疗方法。版权所有 ª 2020,重庆医科大学。由 Elsevier BV 制作和托管 这是一篇根据 CC BY-NC-ND 许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)发表的开放获取文章。
摘要 杜氏肌营养不良症 (DMD) 是由肌营养不良蛋白基因突变引起的 X 连锁隐性肌病。虽然常规治疗已经改善了患者的预后,但不可避免的进行性心肌病仍然是 DMD 患者死亡的主要原因。为了探索新的治疗方案,需要一种合适的涉及心脏的动物模型。我们使用 CRISPR/Cas9 基因组编辑生成了一种肌营养不良蛋白基因发生非框架突变的大鼠模型 (DMD 大鼠)。本研究旨在评估它们的心脏功能和病理,为未来开发 DMD 治疗方案的实验提供基线数据。与年龄匹配的野生大鼠相比,6 个月大的 DMD 大鼠在超声心动图评估中没有显示出显著差异。然而,10 月龄 DMD 大鼠的左心室 (LV) 缩短分数 (P = 0.024) 以及 LV 侧壁 (P = 0.041) 和右心室 (RV) 游离壁 (P = 0.004) 的组织多普勒峰值收缩期速度 (Sa) 均显著恶化。这些功能性发现与组织学分析的纤维化分布一致。尽管心脏表型比预期的要轻,但 DMD 大鼠的心脏受累分布和进展与 DMD 患者相似。这种动物可能是开发有效药物和了解 DMD 患者进行性心力衰竭的潜在机制的有用模型。 (Int Heart J 2020; 61: 1279-1284) 关键词:动物模型、肌营养不良蛋白、心肌病、超声心动图
作者贡献 CK、EW 和 WW 设计了猪研究。MK、VZ、NK、BK 和 EW 生成了 DMD 猪并饲养了该群体。LF、AB、KK、RH 和 CK 进行了猪的转导、结构和功能分析。PH、CJ 和 EM 进行了高分辨率电生理映射并分析了数据。TB、KK、RH、IJ、KV、VJ、FAR、SR 和 SK 进行了猪组织的表达测定和组织学分析。,. FG、WW 生成了 intein-split Cas9 和 gRNA,HB、AG、SK、GS 和 FG 对 DNA 样本进行了测序和分析以进行基因组编辑和脱靶研究。TB、TZ 和 AW 生成并饲养了 AAV9 载体。SL、TZ 和 MO 在体外和体内引入了 G2 优化。AS 生成并分析了 dTomato 猪以进行 AAV-Cre 转导。 AM 和 K.-LL 构思并监督了 iPSC 研究,并提供了资金支持。ABM、DS、TH 和 SS 使用 iPSC 及其肌肉衍生物进行了所有实验。BC 生成、表征和分化了 iPSC 系。ABM 生成同源 hDMDΔ51-52 hiPSC。DS、RD 和 TD 分析了数据。TF 和 FF 进行了质谱分析。CMS、AD 和 DS 在心脏切片上进行了体外实验并分析了数据。SK 和 MW 提供了人类患者血液用于重新编程和概念建议。CK 和 AM 撰写了论文。所有作者都对稿件进行了评论和编辑。
杜氏肌营养不良症 (DMD) 是一种由肌营养不良蛋白基因 ( DMD ) 突变引起的致命神经肌肉疾病。之前,我们应用 CRISPR-Cas9 介导的“单切”基因组编辑来纠正 DMD 动物模型中的多种基因突变。然而,有效的体内基因组编辑需要高剂量的腺相关病毒 (AAV),这给临床应用带来了挑战。在本研究中,我们将 Cas9 核酸酶包装在单链 AAV (ssAAV) 中,将 CRISPR 单向导 RNA 包装在自互补 AAV (scAAV) 中,并将这种双 AAV 系统递送到 DMD 小鼠模型中。有效基因组编辑所需的 scAAV 剂量至少比 ssAAV 低 20 倍。接受全身治疗的小鼠显示肌营养不良蛋白表达恢复,肌肉收缩力改善。这些发现表明,使用 scAAV 系统可以显著提高 CRISPR-Cas9 介导的基因组编辑的效率。这代表着基因组编辑在 DMD 治疗转化方面取得了重要进展。