1-ID X 射线光束线利用先进光子源 (APS) 储存环电子束的高能量 (7 GeV)、其低发射率、短周期波荡器源和针对高能 X 射线优化的光学系统,提供 40-140 keV 光子能量范围内的高亮度光束,用于材料散射研究。这种 X 射线与物质相互作用的特点是衰减低、散射角小、相互空间访问大,使其非常适合用作体探测器以及几何限制或极端样品环境。光束线范围的很大一部分涉及以高空间分辨率研究工程材料的微观结构和演变,例如获得多晶材料的三维晶粒图,给出位置、形状、晶体取向和应变状态,并通常跟踪在施加的刺激下发生微观机械变化的数千个晶粒的这些参数。高空间分辨率研究通常通过结合多种互补技术进行,即在同一样本上使用聚焦和非聚焦光束。聚焦光束技术包括近场高能衍射显微镜 (nf-HEDM;Suter 等人,2006 年)、衍射断层扫描 (Birkbak 等人,2017 年) 和相干衍射成像 (CDI)。非聚焦光束用于传统断层扫描和远场高能衍射显微镜 (ff-HEDM;Lienert 等人,2011 年)。实现这样一套技术使得同轴聚焦光学系统变得可取,从而使线 (1D) 聚焦、点 (2D) 聚焦和非聚焦配置的光束位置保持不变。主要出于这个原因,不使用 Kirkpatrick–Baez 反射光学器件,尽管它们是消色差的,因此很容易适应能量可调性(如果基于全外部反射,而不是多层)。此外,与同轴光学器件不同,小焦点位置容易受到反射光学器件的角度稳定性的影响。基于菲涅尔区的光学器件(例如区域板和多层劳厄透镜)以同轴方式运行,但具有其他衍射级晕,其消除
减少样品交换时间是最大限度提高大分子晶体学 (MX) 光束线吞吐量的关键问题,因为在像素阵列探测器时代,衍射数据收集本身可以在一分钟内完成。为此,在 SPring-8 的 BL41XU 光束线上,基于之前的 SPACE (SPring-8 精密自动冷冻样品交换器) 型号开发了一种升级版样品交换器 SPACE-II。SPACE-II 在 16 秒内实现一次样品交换步骤,其中其动作仅占 11 秒,这得益于以下三个特点:(i) 采用双臂,使样品可以在一个安装臂动作周期内交换,(ii) 采用长行程安装臂,无需取出探测器即可交换样品,(iii) 使用快速移动的平移和旋转台作为安装臂。通过在样品交换序列之前预先保存下一个样品,自动数据收集的时间进一步减少到 11 秒,其中 SPACE-II 的操作占 8 秒。此外,样品容量从 4 个 Uni-Puck 扩大到 8 个。SPACE-II 的性能已在 BL41XU 运行的两年多时间中得到验证;一天内安装在衍射仪上的平均样品数量从 132 个增加到 185 个,错误率为 0.089%,其中统计了用户无法继续实验而必须进入实验舱进行恢复工作的事件。基于这些结果,截至 2019 年 7 月,SPACE-II 已安装在 SPring-8 的另外三条 MX 光束线上。快速且高度可靠的 SPACE-II 现在是 SPring-8 MX 光束线最重要的基础设施之一,为用户提供了充分利用有限光束时间和明亮 X 射线的机会。
该弯曲磁体光束线自 1995 年 2 月开始运行,用于表征光学元件(镜子、光栅、多层、探测器等)能量范围为 50-1000 eV。虽然它主要用于 EUV 投影光刻的多层反射光学元件的精密反射测量,但它具有广泛的测量能力。光学元件由单色仪、反射计和重新聚焦镜组成,以在样品上提供一个小点。单色仪是一种非常紧凑、无入口狭缝、变线距平面光栅设计,其中机械刻划光栅在高放大倍数工作的球面镜的会聚光中运行。镜子的像差通过线间距变化进行校正,因此光谱分辨力 λ / ∆λ 受 ALS 光源尺寸限制,约为 7000。波长通过简单旋转具有固定出口狭缝的光栅进行扫描。反射计能够将样品定位在 10 µ m 以内,并将其角位置设置为 0.002 °。基于 LABVIEW™ 的软件为用户提供了方便的界面。反射计通过差动泵与光束线分开,可在半小时内抽空。辅助实验站可以安装在反射计后面。结果证明了光束线的性能和操作便利性。© 1996 美国物理学会。