机载激光扫描 (ALS) 是一种在扩展区域内获取密集且精确点云的有效方法。为确保无间隙覆盖该区域,点云以条带形式收集,重叠程度相当大。这些重叠区域中包含的冗余信息可与地面实况数据一起使用,以重新校准 ALS 系统并补偿系统测量误差。此过程通常称为条带调整,可改善 ALS 条带的地理参考,换句话说,可提高获取的点云的数据质量。我们提出了一种全自动条带调整方法,该方法 (a) 使用原始扫描仪和轨迹测量,(b) 对整个 ALS 多传感器系统进行在职校准,以及 (c) 单独校正每个条带的轨迹误差。与迭代最近点 (ICP) 算法类似,在重叠的 ALS 条带的点之间迭代直接建立对应关系(避免耗时的点云分割和/或插值)。基于由 103 条条带组成的 ALS 块证明了该方法对大量数据的适用性。
摘要:为了尽量减少机载激光扫描(ALS)条带重叠区域的差异,可以进行条带调整。除了转换模型之外,条带调整的质量还受到此过程中使用的观测值的强烈影响。为了充分利用数据的全部分辨率,应在原始点云而不是插值表面或栅格的基础上建立对应关系,以避免精度损失和系统插值效应。基于原始点云的对应关系的表面匹配方法是迭代最近点(ICP)算法。在本研究中,研究了几种适用于大量数据的 ICP 变体。我们引入了一种新的对应选择方法,该方法基于点对调整计算的影响。作为这项研究的结果,提出了一种变体组合,形成了针对大多数 ALS 数据优化的基线。所研究的变体为 ALS 条带调整提供了对应框架。在具有挑战性的 ALS 场景的基础上展示了特定变体的好处。
【摘要】以往利用人工智能在CT图像上辅助诊断结肠炎的研究,多以消化道造影剂使用后的结肠壁厚度作为特征,但诊断准确率并不高。本研究验证了结肠炎脂肪条带(HU)的CT值是结肠炎检测模型中一个有用的特征。从187例非造影结肠炎CT图像中,制作将患处切成128×128矩阵的原始图像、擦除脂肪条带以外结构的掩模图像、仅显示脂肪条带的阈值图像。SVM分类器输出原始图像、掩模图像、阈值图像的分类准确率,结果显示掩模图像和阈值图像的分类准确率较原始图像有所提高,说明脂肪条带是一个分类准确率较高的特征。
摘要:为了尽量减少机载激光扫描 (ALS) 条带重叠区域内的差异,可以进行条带平差。除了转换模型之外,条带平差的质量还受到此过程中使用的观测值的强烈影响。为了充分利用数据的全部分辨率,应基于原始点云而不是插值表面或栅格建立对应关系,这样可以避免精度损失和系统插值效应。基于原始点云建立对应关系的表面匹配方法是迭代最近点 (ICP) 算法。在本研究中,研究了几种适用于大量数据的 ICP 变体。我们介绍了一种基于点对平差计算的影响来选择对应关系的新方法。作为这项研究的结果,提出了一种变体组合,形成了针对大多数 ALS 数据优化的基线。所研究的变体为 ALS 条带调整提供了对应框架。特定变体的优势在具有挑战性的 ALS 场景的基础上得到展示。
摘要:为了尽量减少机载激光扫描 (ALS) 条带重叠区域内的差异,可以进行条带平差。除了转换模型之外,条带平差的质量还受到此过程中使用的观测值的强烈影响。为了充分利用数据的全部分辨率,应基于原始点云而不是插值表面或栅格建立对应关系,这样可以避免精度损失和系统插值效应。基于原始点云建立对应关系的表面匹配方法是迭代最近点 (ICP) 算法。在本研究中,研究了几种适用于大量数据的 ICP 变体。我们介绍了一种基于点对平差计算的影响来选择对应关系的新方法。作为这项研究的结果,提出了一种变体组合,形成了针对大多数 ALS 数据优化的基线。所研究的变体为 ALS 条带调整提供了对应框架。特定变体的优势在具有挑战性的 ALS 场景的基础上得到展示。
摘要:为了尽量减少机载激光扫描 (ALS) 条带重叠区域内的差异,可以进行条带平差。除了转换模型之外,条带平差的质量还受到此过程中使用的观测值的强烈影响。为了充分利用数据的全部分辨率,应基于原始点云而不是插值表面或栅格建立对应关系,这样可以避免精度损失和系统插值效应。基于原始点云建立对应关系的表面匹配方法是迭代最近点 (ICP) 算法。在本研究中,研究了几种适用于大量数据的 ICP 变体。我们介绍了一种基于点对平差计算的影响来选择对应关系的新方法。作为这项研究的结果,提出了一种变体组合,形成了针对大多数 ALS 数据优化的基线。所研究的变体为 ALS 条带调整提供了对应框架。特定变体的优势在具有挑战性的 ALS 场景的基础上得到展示。
摘要:为了尽量减少机载激光扫描 (ALS) 条带重叠区域内的差异,可以进行条带平差。除了转换模型之外,条带平差的质量还受到此过程中使用的观测值的强烈影响。为了充分利用数据的全部分辨率,应基于原始点云而不是插值表面或栅格建立对应关系,这样可以避免精度损失和系统插值效应。基于原始点云建立对应关系的表面匹配方法是迭代最近点 (ICP) 算法。在本研究中,研究了几种适用于大量数据的 ICP 变体。我们介绍了一种基于点对平差计算的影响来选择对应关系的新方法。作为这项研究的结果,提出了一种变体组合,形成了针对大多数 ALS 数据优化的基线。所研究的变体为 ALS 条带调整提供了对应框架。特定变体的优势在具有挑战性的 ALS 场景的基础上得到展示。
存储设备.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 5 RAID 组和 LUN.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ..................................................................................................................................................................................................................6 条带组 ........................................................................................................................................................................................................................................................6 条带组 ........................................................................................................................................................................................................................................................................6 条带组 ........................................................................................................................................................................................................................................................................................................................6 条带组 ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................6 存储池 .................................................................................................................................................................................................................................. ................. ... . ...
ME5 上的条带由 10 个驱动器组成员构成,其中包含 8 个数据块和 2 个奇偶校验块。此外,如果驱动器组成员超过 18 个,则 ME5 可以支持 18 个驱动器组成员,其中包含 16 个数据块和 2 个奇偶校验块。块是构成条带组件的每个驱动器的最小连续空间单位。这可能包含数据或奇偶校验信息以保护条带的其他数据块。它使用与 RAID 6 相同的保护技术,使用双奇偶校验 P 和 Q Reed Solomon 编码来保护数据。条带中的数据成员越多意味着数据到奇偶校验的开销就越大。一个块为 512KiB,因此条带宽度为 4MiB。条带以线性方式在条带区域内聚合。每个条带区域包含 2048 个连续的 RAID 6 条带,因此条带区域内存储了 8GB 的用户数据。参见图 3 以了解这是如何实现的