大吉姆确实名声显赫。他从来不会说“那条鱼跑掉了”,但每次他放开钓线,似乎都能钓到一条好鱼。如果你愿意的话,这可以说是泰国人的运气……还是真的?吉姆可能只是天生的钓鱼高手,对鱼的嗅觉很敏锐。当然,运气在他的日常工作中起不到任何作用。吉姆是贝尔的人——他用冷酷的事实、数据和经验为行业和进步做出贡献。如果“幸运女神”在一周内降临,她会受到欢迎,因为那只是意味着更快地得到问题的答案。但总的来说,庞大的贝尔组织并不关注运气。我们依靠“诀窍”……依靠研究……依靠最新的技术进步……依靠我们许多国际知名的合作伙伴在为澳大利亚工业提供 420 多种产品和服务方面的丰富经验……并承担诸如设计和布置整套锅炉房仪表(包括烟密度测量和控制设备)等任务,为蒸汽疏水、排气和恒温控制提供全面的技术服务。只要您打个电话,我们就会竭诚为您服务。
摘要。微藻已成为水产养殖饲料中一种有前途的饲料补充剂。因此,本研究的目的是研究椭圆形小球藻作为饲料补充剂对刺鲶(Heteropneustes fogis (Bloch))的生长性能、身体组成和血液学的影响。为进行这项实验,我们配制了五种实验性饮食,以鱼粉为代价补充 0%、2.5%、5.0%、7.5% 和 10% 的椭圆形小球藻,这些饮食分别称为对照、CE 2.5、CE 5、CE 7.5 和 CE 10 饮食。总共 900 条鱼(平均体重为 0.50 ± 0.01 克)被平均分成 15 个玻璃水族箱(180 升)。每天两次用每种实验性饮食喂养三组鱼,直至鱼吃饱,持续 10 周。饲喂试验结束时,饲喂 CE 5 和 CE 7.5 的鱼的增重 (%) 显著 (P < 0.05) 高于饲喂对照饲料的鱼。饲喂 CE 5 的鱼的特定生长率 (SGR) 显著较高 (p < 0.05),但与饲喂 CE 2.5 和 CE 7.5 的鱼相当。饲喂 CE 5、CE 7.5 和 CE 10 的鱼的饲料转化率 (FCR) 显著 (P < 0.05) 较低,
为了更好地了解哪些药物可能对鱼类构成风险,我们在德国、捷克共和国和英国的 18 个地点捕获的野生鲷鱼、鲢鱼和斜齿鳊的血浆中分析了代表 23 类的 94 种药物。基于对人类的横向研究,我们评估了每种测量药物在鱼中发生药理作用的风险。在鱼血浆中发现了 23 种化合物,捷克共和国的鲢鱼中含量最高。德国鲷鱼中没有一种药物的含量可检测到,而泰晤士河的斜齿鳊的药物浓度大多较低。对于两种药物,四条捷克鱼的血浆浓度高于服用相应药物的人类患者血液中的浓度。对于另外九种化合物,12 条鱼的测定浓度超过了相应人类治疗血浆浓度的 10%。大多数确定有明显药理作用风险的药物都针对中枢神经系统。这些药物包括氟哌噻吨、氟哌啶醇和利培酮,所有这些药物都有可能影响鱼类的行为。除了确定对环境有影响的药物外,研究结果还强调了对水生野生动物体内药物水平进行环境监测的价值,以及需要进行更多研究来建立浓度-反应关系。
这项研究的目的是研究侵蚀蛋白对饲喂高脂饮食的斑点海鲈中免疫能力,抗氧化能力和肠道菌群的潜在影响。将共有360名少年随机分为六组,每组重复三个,每组重复二十条鱼。六组包括喂养正常脂肪饮食的CK(Calvin Klein)组,喂养高脂饮食(HF)的组和四组喂食的高脂饮食,分别补充了0.5%(G1),1%(G2),1%(G2),1.5%(G3)和2%(G4)inulin。实验持续了十周。结果表明,与CK组相比,斑点的海鲈中的高脂饮食消耗导致氧化应激损伤,免疫力降低,肠道组织病理异常和肠道菌群的不平衡。但是,与HF组相比,补充丁丁蛋白会显着增加超氧化物歧化酶活性,同时减少丙二醛含量。值得注意的是,补充1.5%的补充还导致补体3(C3)和免疫球蛋白M(IGM)水平显着增加,同时改善肠道组织形态。此外,门水平的分析表明,细菌植物,蛋白质细菌和坚硬是在斑点海鲈肠中发现的主要细菌基团。在属级别的鉴定方面,Muribaculaceae,Citrobacte和Prevotellaceae_ucg-001被确定为主要细菌基团。菊粉组中细菌植物和穆里巴曲霉的丰度最初增加,但随后随着补充量的增加而减少。
当前的研究评估了饮食中补充Triphala(TR)对黄色鲈鱼(Perca flavescens)生长表现,免疫反应,相关基因表达和肠组织学结构的影响。实验设计包括四个组:一个对照组(0%TR/ kg饮食)和三个TREP养育组,有2、4和6%/千克饮食,持续四个星期,每组分配为三份,每组30条鱼类。采样包括每种复制中的三条鱼,以评估免疫反应和基因表达。的发现表明,Triphala显着改善了生长量,免疫球蛋白M(IgM)水平,溶菌酶活性和一氧化氮(NO)活性,最显着(P <0.05)的结果为6%TR/KG饮食组。TR组还显示出葡萄糖和皮质醇浓度显着降低,而6%TR/kg饮食组的值最低。TRON-COMPORATY组显示出显着上调的表达(p <0.05)[胰岛素样生长因子1(IGF-1)]和免疫[alpha 2巨蛋白(A2M),血清淀粉样蛋白A(SAA)(SAA)和补体C3(CCC3)(CCC3)]基因中的基因组合6%,该基因是6%的6%。此外,肠形态的组织学分析表明,绒毛长度以剂量依赖性方式增加,应对其他增强的参数。当前的结果认可Triphala掺入黄色鲈鱼耕作的积极影响,作为增强生长性能,免疫反应,相关基因表达和肠组织学的安全选择。
在印度尼西亚,成为观赏鱼的粉丝已经成为自然的事物。betta鱼是在印度尼西亚很容易找到的观赏鱼类之一。贝塔鱼类的多种类型使贝塔鱼业余爱好者的外行发现很难知道市场上的贝塔鱼的类型。类型的贝塔鱼对贝塔养鱼者的影响非常有影响力。同样,Betta鱼类的类型对Betta Fish竞赛参与者的影响很大,可以确定要遵循的类型的类别。因此,在此问题中,制造一种识别贝塔鱼类的系统是非常必要的。该系统使用卷积神经网络方法,该方法是一种深度学习算法,具有连续的硬体系结构,其参数最多为1,424,403个参数,并且此方法通常用于分类图像。所使用的数据收集总计330个数据,其中包括300个培训数据和30个测试数据。经过设计和实施的系统成功地识别了三种类型的Betta鱼,在10个时期的试验中获得了97%的精度,在15个时期的试验中获得了93%的速度,而在20个时期的试验中,100%的精度最高。关键字:模式简介,图像分类,卷积神经网络,深度学习,贝塔鱼1.引言是生活在淡水和海洋中的鱼类的类型,具有吸引人的身体形状和颜色。观赏鱼具有每种物种的独特性。)。[1]所讨论的独特性是每种观赏鱼所具有的能力。一种具有其独特性的观赏鱼是贝塔·菲斯(Bettasp。这种斗鱼的独特性是它与同性作战的爱好,但不排除另一种类型的可能性,但仍在一个部落中。因此,这条鱼也经常被称为战鱼。
摘要 . 小丑泥鳅(Chromobotia macracanthus (Bleeker,1852))是印度尼西亚的特有物种,是国际市场上需求量很大的淡水观赏鱼之一。对野生和养殖鱼苗的高需求支持了供应的可持续性。然而,天然来源和养殖鱼苗之间的性能差异尚不完全清楚。本研究旨在分析和比较两种来源的小丑泥鳅在饲养 60 天后的性能,包括生长率、存活率和颜色质量。在本研究中,小丑泥鳅鱼苗采用再循环系统饲养。有两种处理:野生和养殖幼鱼,每种重复三次。将长度为 1.5–2 cm 的幼鱼以每升水 3 条鱼的密度放养。结果表明,野生小丑泥鳅比养殖小鱼表现出更好的生长潜力。野生小丑泥鳅的平均生长率达到 3.731±0.087%,明显高于养殖鱼的 2.020±0.082%。两组之间的存活率没有显著差异,野生小丑泥鳅的存活率为 98%,而养殖鱼的存活率为 91%。研究表明,野生小丑泥鳅的生长率、存活率和颜色质量均优于养殖鱼。关键词:小丑泥鳅,鱼苗,性能,循环水,观赏鱼。引言。小丑泥鳅是印度尼西亚加里曼丹和苏门答腊特有的一种淡水观赏鱼(Musthofa 等人 2018 年;Liyana 等人 2019 年)。这种鱼在全球市场上很受欢迎,是观赏水产养殖中最重要的品种之一。为了满足这一需求,必须利用自然资源和养殖幼鱼。尽管产卵方法和受控环境中的生殖管理已经迅速发展(Baras 等人 2012 年;Abinawanto 等人 2018 年),但来自这些来源的幼鱼之间的性能差异仍然是一个重大问题。
这项研究评估了用枯草芽孢杆菌HBB493®补充饮食对斑马鱼(Danio rerio)生长,生存,配子发生和肠道健康的益生菌作用。600名少年分为五个实验组:对照组I(0.0 cfu/g),II组(6.5x10 9 cfu/g),III组(1.3x10 10 cfu/g),第IV组(2.6x10 10 CFU/g)和V组V(3.9x10 10 CFU/G)。每种治疗和对照都有3个重复,而每个复制都有40条鱼。实验的持续时间为100天。在实验终止时,通过组织学评估了性腺和肠道。生长参数,在饲喂的3.9x10 10 CFU/g的鱼类中与对照,II组和III组B.枯草芽孢杆菌FED组(p <0.05)中观察到的<9x10 10 cfu/g(p <0.05),而V组为最佳。治疗组之间的存活率没有显着差异(P> 0.05)。性腺的组织学观察结果揭示了喂养不同水平枯草芽孢杆菌的鱼类之间的差异。喂养饮食II,III,IV和V与没有枯草芽孢杆菌的饮食相比,性腺具有更多的性腺。使用绒毛和杯状细胞的状态来评估补充枯草芽孢杆菌的鱼类饮食的肠道健康。绒毛和杯状细胞在所有不同水平的枯草芽孢杆菌中都完好无损。本研究表明,应使用饮食补充3.9x10 10 CFU/G益生菌B.枯草脂蛋白枯草酵母在观赏斑马鱼中的生长参数,生存率,配子发生和肠道健康的增强。
Carassius Gibelio(普鲁士鲤鱼)是加拿大新鲜水域的最新入侵者,有报道称其在艾伯塔省和萨斯喀彻温省。与引入的Auratus(金鱼)和推出的(但可能被误认为)C。Carassius(Crucian Carp)的形态相似性使得在没有仔细检查的情况下很难区分这些物种。线粒体细胞色素C氧化酶I(COI)基因的DNA条形码是一种潜在的工具,可以识别Carassius个体,但公开序列的不正确注释可能会混淆物种鉴定的尝试。在这里,我们使用形态和DNA条形码来识别从艾伯塔省的两个地点收集的假定的C. gibelio标本,这些标本构成了该省的新记录。在形态上,标本与C. gibelio一致,但在C. gibelio和C. auratus的范围内。从遗传上讲,我们的样品无法鉴定为物种水平,与多种卡拉西修斯物种相匹配。单倍型网络与统计分析一致,支持艾伯塔鲤鱼为C. gibelio的识别。此外,艾伯塔省的单倍型与海鲜贸易报道的一条鱼有分享,这可能是进入艾伯塔省的可能来源。因此,尽管大胆的算法表明COI基因不是对Carassius物种物种水平鉴定的有力候选者,但单倍型网络方法和对单倍型之间可变性的统计检查可以用于对物种认同做出合理的推论。由于其在加拿大的生态影响预计,对卡拉西乌斯物种的早期发现和管理至关重要; DNA条形码是物种识别的重要工具,尤其是当标本在预期的多种物种的表型范围内时。
世界面临着非常严重的环境问题。这本书是关于科学和尤其是生物科学范围的帮助。本书涉及各种各样的主题,这些主题通常由不同的专家在单独的书中涵盖,这些专家很可能在不同的大学系中接受过培训,包括生物科学,环境科学,林业,农业,农业,范围科学,渔业和野生动物,海洋科学等。这里的主题是由一个人写的一本书所涵盖的。我写了这样的书,因为我相信世界需要研究各种环境问题的人们,他们了解他们之间如何相互联系以及基于生态科学的基本原则的关系。在新千年中,世界人口将继续数十年来继续增加。这是为什么必须承受资源压力的原因之一。本书假设将来对能源,水,食物,木材以及对许多用途的新化学物质的需求增加。生态挑战是以可持续的方式满足这些需求,但同时减少对野生物种,社区,景观以及它们所依赖环境的质量的有害影响。有时科学可以建议解决生态问题的解决方案:例如,控制疾病或最大程度地减少污染的影响。有时它可以回答实用问题,例如,今年我们可以从海洋中捕获多少条鱼,而不会在未来几年中减少捕获物。Edward I. NewmanEdward I. Newman有时它可以帮助解决冲突,例如在土地的替代用途上。本书与应用生态学的每个方面有关。第二版不仅仅是第一版的更新,它是一个重大的重写。在七年中,许多相关学科领域都进行了巨大的研究活动。也存在重要的事件,例如成功重新建立了黄石国家公园中的狼和纽芬兰鳕鱼库存的崩溃。这些事件和研究发现不仅提高了我们的知识和理解,而且提出了新的优先事项,并导致了态度的变化。因此需要重大重写。这本书不是献给我的父母,我的妻子,我的孩子或其他任何在我一生中给我个人支持的人。它致力于每个关心我们世界未来的人。