David T. Young Young 博士的主要科学兴趣和贡献集中在研究和了解太阳系等离子体的化学成分以及成分对行星磁层动力学的影响。 为了追求这些兴趣,Young 博士领导或参与了几种广泛用于研究空间等离子体的尖端光谱仪的设计和开发。 基于他的仪器进行的实验有助于更好地了解陆地、行星和彗星磁层。 20 世纪 70 年代,Young 博士表明地球磁层的成分与太阳周期的紫外线辐射密切相关。 20 世纪 80 年代,他的工作集中于研究赤道磁层中发现的自生离子回旋波对重离子(He + 和 O + )的加速。 20 世纪 90 年代,他的工作主要集中于开发他正在开发的仪器的测量技术。到了 21 世纪初和 21 世纪 10 年代,杨博士将注意力转向了土星磁层的成分相关复杂性。他发现冰卫星释放的“水离子”主导着土星的磁层。他还致力于了解土卫六复杂的大气层和电离层,它们主要由带正电和负电的重碳分子组成。正是这些分子形成了覆盖土卫六表面的气溶胶颗粒。杨博士的实验室研究推动了尖端离子质谱技术的发展,开辟了新的实验可能性。他是第一个将质谱仪的能量范围和灵敏度提高了几个数量级的人,例如极地任务中的热离子动力学实验。他的工作导致了能量谱仪的小型化和性能的提高,例如罗塞塔号任务中的离子电子传感器,以及质谱仪,例如深空一号上的行星探索等离子体实验。 2002 年,他发明并领导了用于欧罗巴快船任务的超高分辨率 MASPEX 质谱仪(性能超越大多数实验室仪器)的早期开发。1988 年,杨博士构思了卡西尼等离子体光谱仪 (CAPS),这是一套集成的三台仪器套件,用于卡西尼号土星任务。由于他在伯尔尼大学期间在欧洲拥有长达十年的经验,他能够组建和管理一个团队,该团队最终包括来自美国和五个欧洲国家的 170 名科学家和工程师。1990 年,NASA 选择 CAPS 并由杨博士担任首席研究员,部分原因是欧洲团队的贡献为 NASA 在整个任务期间节省了 1500 万美元(以 2022 年的美元计算)。2019 年,卡西尼项目管理部门告知他,CAPS 的数据为 500 多篇出版物和 26 篇博士论文做出了贡献。在他的职业生涯中,杨博士Young 为实验空间科学界做出了贡献,他在四所机构设计和建造了高精度校准系统:莱斯大学、伯尔尼大学、洛斯阿拉莫斯大学和西南研究院的两所机构。这些系统已用于各种项目,包括阿波罗月球表面实验包、欧空局的罗塞塔号 67P/Churyumov-Gerasimenko 任务和卡西尼号。除了实验空间科学工作外,Young 博士的兴趣还包括教育下一代。为此,他教授了磁层物理和伽马射线光谱学课程(伯尔尼大学),以及空间仪器和航天器设计课程(伯尔尼大学)
多年来经受住了如此多的考验。我们的业绩还反映了整个行业在这种艰难的宏观经济和地缘政治环境中的强劲表现。优质烈酒市场(我们旨在成为该市场的世界领导者)表现尤为出色。此外,我们还受益于某些因疫情而加剧的消费趋势:消费升级、家庭调酒热潮以及通过在线营销更直接地与客户接触的转变。我们已准备好顺应这些趋势的浪潮——这三种趋势都发挥了我们的优势并与我们的战略相结合。此外,我们在最具活力的市场中占据有利地位:美国、中国和欧洲部分地区。最后,我们利用积极的成果,对我们的品牌投入了更多投资。我们知道,当一切进展顺利时,投资未来才是最重要的。这一年对你来说,最精彩的部分是什么?你最自豪的成就是什么?
杨中校的主要职务包括:2007 年至 2008 年在韩国龙山服役,担任第 8 军作战与计划官;2009 年在 1-227 攻击侦察营担任 S-2 营长,参与伊拉克自由行动;2012 年在 4-227 攻击侦察营担任 S-3 营助理,参与持久自由行动;2013 年至 2016 年在纽约州西点军校担任西点军校招生局西南地区指挥官;2016 年至 2018 年在华盛顿州刘易斯-麦科德联合基地担任第一特种部队大队航空兵官;2018 年至 2019 年在韩国龙仁担任联合地面部队司令部作战官。杨中校目前担任美国陆军人才计划理事会(USATID)陆军教练项目经理,在五角大楼任职。
人们对天然蚕丝作为工程复合材料的替代增强材料的兴趣日益浓厚。本文,我们在相关研究背景下总结了作者过去几年对两种常见蚕丝和蚕丝纤维增强塑料 (SFRP) 的研究。家蚕丝纤维由于其弹塑性变形机制,在常温和低温条件下表现出良好的强度和韧性。特别是野生柞蚕丝还表现出微米和纳米纤维化,这是其韧性和抗冲击性的重要机制。对于 SFRP 复合材料,我们发现:(i) 为获得最佳增强增韧效果,必须将蚕丝纤维体积分数达到 50% 以上;(ii) 更坚韧的柞蚕丝比家蚕丝具有更好的增强增韧作用;(iii) 冲击性能和韧性是 SFRP 的优势性能;(iv) 天然蚕丝与其他纤维杂交可以进一步提高 SFRP 的机械性能和在工程应用中的经济性; (五)轻量化结构设计可以提高 SFRP 的能量吸收效率。对蚕丝和蚕丝纤维增强聚合物复合材料 (SFRP) 的综合力学性能和增韧机制的了解可以为材料设计和应用提供关键见解。
我们代表申请人 Foothills Solar, LLC(以下简称“申请人”)参与上述程序。2024 年 8 月 26 日,可再生能源选址和电力传输办公室(以下简称“ORES”)发布了 Foothills Solar 项目的许可证草案和许可证草案条件可用性、公众意见征询期和公众意见听证会以及问题确定程序开始的综合通知(以下简称“综合通知”),并安排在 2024 年 10 月 29 日就许可证草案举行公众意见听证会。在综合通知中,ORES 指示申请人在 2024 年 11 月 25 日之前提交并回应公众意见征询期内收到的公众意见。附件为申请人对公众意见征询期内收到的公众意见的回应以及对 Mayfield 镇的党派地位综合请愿书和市政地方法律遵守声明的回应,并附有附件。
变革也意味着新人将加入我们。我们已经从政府实验室聘请了两位资深教员(他们的损失就是我们的收获!),他们将于今年夏天加入我们。拥有杨百翰大学博士学位的 Ryan Kelly 博士来自太平洋西北国家实验室,是极小生物样本(例如单细胞,甚至单个细胞器)质谱分析方面的专家。几年前曾担任诺贝尔奖获得者 Fraser Stoddart 博士后研究员的 Walter Paxton 博士来自桑迪亚国家实验室和洛斯阿拉莫斯国家实验室联合运营的综合纳米技术中心,他将加入我们。他的工作是将离子转运体等生物功能分子放入合成膜中,从而在合成材料中产生逼真的功能。我们很高兴欢迎这两位新教员。
海报論文发表林韦志杨筑安杨筑安赖欣宜易哲安陈国豪邓珮琳徐培文侯儒君胡瑄耘王乔立苏正宪苏志文黄兆清洪翊芸Wee Beng Lim 陈淯圣郭哲玮吴昀轩林柏廷宋泓葰柯虹瑩林政宏林奕全张馨呂宗谚林弘杰陈家维蔡奇男陈瑜轩孙德娟林子桓邱景徽陈祺蔡世国谢立伟翁颖信苏柏豪陈韦佑王升钧洪孟君胡家豪陈羽蓁林炜翔胡政嘉胡政嘉林文元许倬宪藍锦龍余滋雅褚祥蕴洪晨玮许嘉峻陈冠玮葉怡伶吴家森慧麗Mintra Phochanamanee 吴宗原