源对碳(C)分配是由水槽强度驱动的,即水槽器官进口C的能力,在组织生长和生物量生产率中起着核心作用。但是,在树木中尚未彻底表征水槽强度的分子驱动因素。生长素作为主要的植物植物激素,可调节源组织中光剂量的动员,并提高碳水化合物向水槽器官(包括根)的易位。在这项研究中,我们使用了“生长素刺激的碳汇”方法来了解杨树中长距离源 - 键C分配中涉及的分子过程。杨树碎屑被叶面喷涂,上面喷涂了极地生长素传输调节剂,包括生长素增强剂(AE)(即IBA和IAA)和生长素抑制剂(AI)(即NPA),然后全面使用生物量评估,均经材料来对叶片,茎和根组织进行全面的分析,均质和均质概况,均经均经材料,c isotope and coptope and coptope and coptoper nertem nertops和coptoper nertops nekotom and et necotom nerting nekoling,et negoling noursem。生长素调节剂改变了根部干重和分支模式,AE增加了光合固定的C从叶片到根组织。转录组分析在AE条件下确定了根组织中高度表达的基因,其中包括编码多半乳糖醛酸酶和β-淀粉酶的转录本,这些转录物可能会增加水槽的大小和活性。代谢分析表明,总代谢的变化,包括甲醇的相对丰度含量改变,在AE和AI条件下,根组织中柠檬酸盐水平的相反趋势。总而言之,我们假设一个模型表明,流动糖醇,淀粉代谢衍生的糖和TCA-Cycle中间体可以作为杨树中的源– sink C关系,作为水槽强度的关键分子驱动因素。
CRISPR 介导的基因组编辑已成为生物性状遗传修饰的有力工具。然而,开发基于同源定向 DNA 修复 (HDR) 的高效、位点特异性基因敲入系统仍然是植物面临的重大挑战,尤其是在杨树等木本植物中。本文表明,同时抑制非同源末端连接 (NHEJ) 重组辅因子 XRCC4 和过度表达 HDR 增强因子 CtIP 和 MRE11 可以提高基因敲入的 HDR 效率。使用这种方法,BleoR 基因被整合到 MKK2 MAP 激酶基因的 3' 端以产生 BleoR-MKK2 融合蛋白。根据 TaqMan 实时 PCR 评估的完全编辑核苷酸,与没有 HDR 增强或 NHEJ 沉默相比,当使用 XRCC4 沉默结合 CtIP 和 MRE11 过度表达时,HDR 介导的敲入效率高达 48%。此外,HDR 增强子过表达和 NHEJ 抑制的组合还提高了基因组靶向效率,使 CRISPR 诱导的插入和缺失 (InDels) 减少了 7 倍,从而对杨树中基于 MKK2 的盐胁迫反应没有功能性影响。因此,这种方法不仅适用于杨树和植物或农作物,也适用于哺乳动物,以提高 CRISPR 介导的基因敲入效率。
CRISPR 介导的基因组编辑已成为生物性状遗传修饰的有力工具。然而,开发基于同源定向 DNA 修复 (HDR) 的高效、位点特异性基因敲入系统仍然是植物面临的重大挑战,尤其是在杨树等木本植物中。本文表明,同时抑制非同源末端连接 (NHEJ) 重组辅因子 XRCC4 和过度表达 HDR 增强因子 CtIP 和 MRE11 可以提高基因敲入的 HDR 效率。使用这种方法,BleoR 基因被整合到 MKK2 MAP 激酶基因的 3' 端以产生 BleoR-MKK2 融合蛋白。根据 TaqMan 实时 PCR 评估的完全编辑核苷酸,与没有 HDR 增强或 NHEJ 沉默相比,当使用 XRCC4 沉默结合 CtIP 和 MRE11 过度表达时,HDR 介导的敲入效率高达 48%。此外,HDR 增强子过表达和 NHEJ 抑制的组合还提高了基因组靶向效率,使 CRISPR 诱导的插入和缺失 (InDels) 减少了 7 倍,从而对杨树中基于 MKK2 的盐胁迫反应没有功能性影响。因此,这种方法不仅适用于杨树和植物或农作物,也适用于哺乳动物,以提高 CRISPR 介导的基因敲入效率。
摘要:金字塔形、直立或直立生长的植物形态的特点是枝条和叶子的分枝角度较窄。直立叶子和枝条习性的优势可能是光线更有效地穿透较低的冠层。已经报道了包括桃树在内的各种树种的金字塔基因型。旁系同源水稻直系同源物 TILLER ANGLE CONTROL 1 (TAC1) 被认为是负责直立生长的基因。然而,对于任何金字塔树种基因型,尚未真正证明 TAC1 基因的敲除突变会导致植物金字塔形生长。通过计算机分析,我们在 P. trichocarpa 基因组中发现了一个假定的水稻 TAC1 直系同源物(Potri.014G102600,“TAC-14”)及其旁系同源物(Potri.002G175300,“TAC-2”)。通过应用转基因 CRISPR/Cas9 方法成功敲除 P. × canescens 克隆 INRA 717-1B4 中的两个假定的 PcTAC1 直系同源物。在温室中对突变体进行了为期三年的分子分析和表型分析。我们的结果表明,“TAC-14”的纯合敲除足以诱导 P. × canescens 中的金字塔形植物生长。如果在短轮伐期林(SRC)上种植多达两倍的金字塔树种,那么可以提高木材产量,无需任何育种,只需增加默认田地面积上的树木数量即可。
摘要 测定Cas9对靶位点的切割效率对于基因组编辑非常重要。然而,这种测定只能通过体外方法进行,因为需要纯化Cas蛋白和合成gRNA。在这里,我们开发了一种体内方法,称为植物瞬时CRISPR/Cas编辑(TCEP)来测定Cas9的切割效率。按常规方法构建农杆菌介导的植物转化CRISPR/Cas载体。利用我们建立的瞬时转化方法,Cas9蛋白和gRNA瞬时表达并形成复合物以切割其靶位,从而导致动态DNA断裂。使用qPCR定量断裂的DNA以测量Cas9的切割效率。我们利用TCEP和体外方法研究了白桦和山杨×波利纳植物中Cas9对不同靶位点的切割效率。 TCEP法测定结果与体外法一致,说明TCEP法测定切割效率可靠。另外,利用TCEP法,我们发现热处理和超声处理均能显著提高CRISPR/Cas效率。因此,TCEP法具有广泛的应用价值,不仅可用于分析CRISPR/Cas效率,还可用于确定Cas9切割中涉及的因素。
摘要 关键信息 早花系统 HSP:: AtFT 允许快速评估基于构建体 PsEND1:: barnase–barstar 的杨树基因遏制系统。转基因株系表现出花粉发育紊乱和不育。 摘要 通过花粉流从转基因或非本地植物物种向其可杂交的天然亲属进行垂直基因转移是一个主要问题。已经提出了基因遏制方法来减少甚至避免树种之间的基因流动。然而,由于代际时间长,评估树木的遗传遏制策略非常困难。在这种情况下,早期开花诱导可以更快地评估遗传遏制。虽然没有可靠的方法来诱导杨树的可育花,但最近开发了一种新的早花方法。在这项研究中,获得了含有基因构建体 PsEND1:: barnase–barstar 的早花杨树系。选择 PsEND1 启动子是因为它的早期表达模式、多功能性和产生与 barnase 基因融合的雄性不育植物的效率。 RT-PCR 证实了花朵中的 barnase 基因活性,花粉发育受到干扰,导致花朵不育。本研究开发的系统是研究森林树种基因控制的宝贵工具。
南美安第斯山脉。它们很容易耕种,并且是林业和农业系统的重要组成部分,通常适用于小型农民。他们提供各种各样的木材产品(包括工业圆木和杆子,纸浆和纸张,重建的木板,胶合板,贴面,锯木材,包装板,托盘和家具),非木材产品(饲料,燃料材料)以及服务(避难所,遮阳,遮阳,遮阳和蛋白质,水,水,水,锅,cr,cr,livest and livest and livest and dnwernings and dwerning)。杨树和柳树在植物修复中起重要作用(即占用重金属以净化污染的土壤),对脆弱的生态系统的康复(包括打击荒漠化)和森林景观的体现。他们经常与农业,园艺,葡萄栽培和凋亡融合在一起。由于它们的快速生长,它们对碳隔离有效。他们提供就业oppor-