1物理系,1 Sam Higginbottom农业,技术与科学大学,Naini,Prayagraj-211007,北方邦,印度摘要 - Young的石墨烯模量及其衍生物及其衍生物的衍生物估计在沿Armchair方向及其沿着Zigzag方向应用时施加载荷。对于杨氏模量,使用弹性常数,取决于样品长度,宽度和厚度。因此,在石墨烯及其衍生物的加载案例中绘制了Young的模量长度图。发现,Young的模量随着恒定宽度而增加,而单层的Young模量大于双层。在扭曲的双层石墨烯的情况下,Young的模量以扭曲角度降低。关键词 - 弹性常数,Young的模量,扭曲的石墨烯和SWNT。简介 - 石墨烯片是在蜂窝结构中组织的二维碳原子。它与六角蜂窝晶格紧密结合。图1个石墨烯片的示意图。通常,六边形结构具有五个独立的弹性常数。这些如下; C 11,C 12,C 13,C 33和C 44。C 11和C 12更负责弹性。so,
脉冲激励技术 (IET) 用于测定含锆石的商用非耐火氧化铝-氧化锆-二氧化硅 (AZS) 材料的杨氏模量和阻尼。杨氏模量的温度依赖性在 900 °C 左右(加热过程中)急剧下降,在 1000 °C 时达到最小值,随后再次增加。随后在 1000 °C 以上急剧增加和冷却过程中的滞后现象表明,这种弹性异常与氧化锆的单斜到四方相变有关。阻尼的温度依赖性在 300-400 °C 范围内显示出明显的阻尼峰,这对氧化锆来说也是典型的,并且在 700-800 °C 以上阻尼急剧增加,这比杨氏模量急剧下降的开始温度低约 100 °C 并且没有表现出任何滞后现象。该高温阻尼峰可能受到少量晶间玻璃相的软化行为的影响。
Zequn Cui, Wensong Wang, Lingling Guo, Zhihua Liu, Pingqiang Cai, Yajing Cui, Ting Wang, Changxian Wang, Ming Zhu, Ying Zhou, Wenyan Liu, Yuanjin Zheng, Guoying Deng*, Chuanlai Xu*, Xiaodong Chen* Dr. Zequn Cui, Zhihua Liu, Pingqiang Cai, Yajing Cui, Ting Wang, Changxian Wang, Ming Zhu, Prof. Xiaodong Chen Innovative Centre for Flexible Devices (iFLEX), Max Planck–NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore. E-mail: chenxd@ntu.edu.sg Dr. Wensong Wang, Prof. Yuanjin Zheng School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore. Dr. Lingling Guo, Prof. Chuanlai Xu International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China. E-mail: xcl@jiangnan.edu.cn Ying Zhou, Wenyan Liu Nursing Department, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China. Dr. Guoying Deng Trauma & Emergency Center, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China. E-mail: guoying.deng@shgh.cn Keywords: Young's modulus, self-locking, stretchable strain sensors, haptics
多晶硅拉伸试样在北卡罗来纳州微电子中心 (MCNC) 制造,并在约翰霍普金斯大学应用物理实验室进行测试准备。MCNC 的 DARPA 支持的多用户 MEMS 工艺 (MUMP) 是制造表面微机械设备常用的典型工艺。两层多晶硅用于形成 MEMS 设备的结构元件。多晶硅层由磷硅酸盐玻璃 (PSG) 牺牲层隔开,并通过一层氮化硅与支撑硅基板隔离。最后的金属层定义了设备的电触点。当设备制造完成后,PSG 层会溶解在蚀刻溶液中以释放机械结构。