协调经济发展与文化可以采取多种形式,包括扩大文化项目和服务以满足当前需求和未来人口增长、将文化机构和节日的推广与旅游业结合起来、支持艺术家成为企业家和小企业主、增加对创意产业的投资以及保护和诠释历史地标。视觉艺术、表演艺术、音乐和电影等艺术和创意产业可以产生经济活动并创造就业机会,同时促进推动技术和制造业等其他经济部门发展的创新。增长杠杆可以包括提供资金和资源来支持艺术家和企业家,以及创建空间和活动来展示他们的作品。
杨中校的主要职务包括:2007 年至 2008 年在韩国龙山服役,担任第 8 军作战与计划官;2009 年在 1-227 攻击侦察营担任 S-2 营长,参与伊拉克自由行动;2012 年在 4-227 攻击侦察营担任 S-3 营助理,参与持久自由行动;2013 年至 2016 年在纽约州西点军校担任西点军校招生局西南地区指挥官;2016 年至 2018 年在华盛顿州刘易斯-麦科德联合基地担任第一特种部队大队航空兵官;2018 年至 2019 年在韩国龙仁担任联合地面部队司令部作战官。杨中校目前担任美国陆军人才计划理事会(USATID)陆军教练项目经理,在五角大楼任职。
人们对天然蚕丝作为工程复合材料的替代增强材料的兴趣日益浓厚。本文,我们在相关研究背景下总结了作者过去几年对两种常见蚕丝和蚕丝纤维增强塑料 (SFRP) 的研究。家蚕丝纤维由于其弹塑性变形机制,在常温和低温条件下表现出良好的强度和韧性。特别是野生柞蚕丝还表现出微米和纳米纤维化,这是其韧性和抗冲击性的重要机制。对于 SFRP 复合材料,我们发现:(i) 为获得最佳增强增韧效果,必须将蚕丝纤维体积分数达到 50% 以上;(ii) 更坚韧的柞蚕丝比家蚕丝具有更好的增强增韧作用;(iii) 冲击性能和韧性是 SFRP 的优势性能;(iv) 天然蚕丝与其他纤维杂交可以进一步提高 SFRP 的机械性能和在工程应用中的经济性; (五)轻量化结构设计可以提高 SFRP 的能量吸收效率。对蚕丝和蚕丝纤维增强聚合物复合材料 (SFRP) 的综合力学性能和增韧机制的了解可以为材料设计和应用提供关键见解。
我们代表申请人 Foothills Solar, LLC(以下简称“申请人”)参与上述程序。2024 年 8 月 26 日,可再生能源选址和电力传输办公室(以下简称“ORES”)发布了 Foothills Solar 项目的许可证草案和许可证草案条件可用性、公众意见征询期和公众意见听证会以及问题确定程序开始的综合通知(以下简称“综合通知”),并安排在 2024 年 10 月 29 日就许可证草案举行公众意见听证会。在综合通知中,ORES 指示申请人在 2024 年 11 月 25 日之前提交并回应公众意见征询期内收到的公众意见。附件为申请人对公众意见征询期内收到的公众意见的回应以及对 Mayfield 镇的党派地位综合请愿书和市政地方法律遵守声明的回应,并附有附件。
变革也意味着新人将加入我们。我们已经从政府实验室聘请了两位资深教员(他们的损失就是我们的收获!),他们将于今年夏天加入我们。拥有杨百翰大学博士学位的 Ryan Kelly 博士来自太平洋西北国家实验室,是极小生物样本(例如单细胞,甚至单个细胞器)质谱分析方面的专家。几年前曾担任诺贝尔奖获得者 Fraser Stoddart 博士后研究员的 Walter Paxton 博士来自桑迪亚国家实验室和洛斯阿拉莫斯国家实验室联合运营的综合纳米技术中心,他将加入我们。他的工作是将离子转运体等生物功能分子放入合成膜中,从而在合成材料中产生逼真的功能。我们很高兴欢迎这两位新教员。
众议院 2025 年 1 月 31 日星期五 范杜恩女士。 议长先生,今天我在此表彰北里奇兰希尔斯警察局局长迈克杨 40 年的公共服务奉献,并祝贺他退休。杨局长于 1985 年加入北里奇兰希尔斯警察局,此前曾在美国空军服役四年。加入警察局后不久,他就以领导者的身份脱颖而出,从 1997 年到 2013 年担任过中士、中尉、上尉和助理局长。他的模范服务使他于 2023 年晋升为警察局长,他以正直和专业的态度领导这一职位。在他的整个职业生涯中,杨局长指导和影响了警察局内的多个部门,包括巡逻、交通、特警、刑事调查、培训、通讯和预算管理。他对警员发展和继续教育的重视增强了该部门的实力,确保那些在职的警员都具备最高水平的培训和专业知识。杨局长因其服务而获得了无数奖项,包括该部门 1989 年的最高荣誉——荣誉勋章。杨局长的领导将北里奇兰希尔斯警察局打造成了如今备受尊敬的组织。他对公共服务的承诺在北里奇兰希尔斯及其他地方留下了不可磨灭的印记,我祝愿他在当之无愧的退休生活中一切顺利。
摘要《人工智能为何失败:视差》是“人工智能为何失败”系列中的一个互动视觉艺术装置。这件作品旨在通过滑动屏幕展示人工智能从无法解释的“黑匣子”到可解释的“白匣子”的转变。其目的是让人们,无论他们对人工智能的了解程度如何,都能直观地理解人工智能错误分类背后的原因。通过与滑动屏幕交互,用户可以点击他们感兴趣的错误分类图像,探索影响分类的主要因素。他们还可以比较有偏见的人工智能实例和正常的人工智能实例之间的数据和模型差异。这个装置是跨越技术差距的桥梁。与各种AI模型集成,帮助艺术家和设计师更深入地了解AI如何做出与艺术设计风格、特征、图像、材料、音乐节奏、旋律和和弦相关的决策。
杨冰博士 密苏里大学农业、食品与自然资源学院;植物科学部 340e Bond 生命科学中心 哥伦比亚,密苏里州 65211-7145 关于:确认具有抗细菌性枯萎病的基因组编辑水稻的监管状态 亲爱的杨博士: 感谢您 2020 年 5 月 22 日的来信,您询问信中描述的大米(Oryza sativa)产品是否属于 7 CFR 第 340 部分规定的受管制物品。您的来信描述了水稻的 CRISPR-Cas 基因组编辑,这种编辑破坏了糖转运基因启动子的功能,而糖转运基因对于植物易受水稻白叶枯病菌感染至关重要,从而产生了所需的抗细菌性枯萎病。 2000 年《植物保护法》 (PPA) 赋予美国农业部权力监督植物害虫或有害杂草的检测、控制、根除、抑制、预防或延缓蔓延,以保护美国的农业、环境和经济。根据《联邦法规》第 7 章第 340 条“引入通过基因工程改变或生产的植物害虫或有理由相信是植物害虫的生物和产品”,美国农业部负责监管某些使用基因工程开发的生物的进口、州际运输和环境释放(田间测试),这些生物是或有可能成为植物害虫。根据该法规,如果某种生物是使用供体生物、受体生物或 § 340.2 中列出的媒介或媒介剂进行基因工程改造并符合植物害虫定义的,则该生物被视为受管制物品;或为未分类的生物和/或分类不明的生物,或管理员确定该生物为植物害虫或有理由相信其为植物害虫。在您的信函中,您描述了使用解除武装的农杆菌将 CRISPR-Cas 基因编辑试剂引入水稻细胞以编辑三个目标基因的启动子。没有提供 DNA 修复模板。使用常规育种来生成和选择包含预期编辑但不引入外源 DNA 的后代。通过使用对应于 CRISPR-Cas 构建体不同成分的十种不同引物对进行 PCR 扩增来确认引入构建体中不存在 DNA。根据您在信函中做出的陈述,包括您对确认方法结果的描述,您的基因组编辑水稻品系本身不是植物害虫,并且没有植物害虫序列整合到水稻植物基因组中。与之前对类似询问信的回复一致,美国农业部不认为您的基因组编辑水稻品系受 7 CFR 第 340 条的监管。
可再生甲醇对印度经济的作用有多大? Gregory A. Dolan:甲醇自 2016 年以来一直被列入政府议程,是一种战略产品,可以帮助印度实现其 2070 年碳中和愿景。甲醇可以由各种传统(天然气和煤炭)和可再生原料生产,包括生物质、城市固体废物、太阳能和风能以及捕获的二氧化碳。作为一种低碳和净碳中性燃料,甲醇为显著减少温室气体排放提供了途径。与传统燃料相比,可再生甲醇可以在碳生命周期评估 (LCA) 基础上减少高达 95% 的二氧化碳排放量,减少高达 80% 的氮氧化物排放量,并消除硫氧化物和颗粒物排放。当甲醇用作燃料以降低道路交通、内陆水道、发电等应用的碳强度时,这些气候和当地污染效益会叠加,
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.