肺组织具有各种类型的上皮组织干细胞,在组织稳态中起着至关重要的作用,并因吸入化学颗粒以及病毒/细菌感染引起的急性损伤而再生。由于如此重要的作用,组织干细胞的功能障碍与呼吸道疾病有关。在今晚的研讨会上,我将介绍我们目前关于两个肺部干细胞的发现。气道基底细胞和牙槽II型(AT2)细胞。1)基底细胞通过从缓慢的循环转变为增殖,然后又回到缓慢的循环中,从而导致成人组织再生。尽管持续增殖会导致肿瘤发生,但调节这些转变的分子机制仍然未知。使用发育中的鼠气祖细胞的时间单细胞转录组学,我们发现TGF-β-ID2轴通常调节发育和再生过程中基础细胞中基础细胞中的增殖转变,并且其微调对正常再生至关重要,同时避免基础细胞增生。2)肺泡是肺纤维化起源的主要根源,已广泛研究了分子病因。调节肺泡上皮细胞纤维化状态的机制仍然难以捉摸。为了阐明上皮损伤和肌纤维细胞分化之间的因果关系,我们使用AT2干细胞培养建立了一个基于器官的肺纤维化模型。我们发现核心细胞系统在肺纤维发生中起着核心作用。该模型系统可用于研究较少炎症的肺纤维化的初始诱导,包括特发性肺纤维化。
作者想向为这篇论文做出重要贡献的几位人士表示感谢。首先,我要感谢我的导师 Lyle Campbell 博士,他在这个项目的每一步都给予了无价的帮助和指导。我还要感谢我的委员会的其他成员——Dr. M. Jill Brody、Hugh Buckingham 博士、Arnulfo Ramirez 博士和 Lee Webster 博士对这个项目的投入。我要感谢 Ruth E. Smith 博士和已故的 Marie “Mimi” Watson 多年来的支持。我要感谢我的父母 Charles 和 Norma Holloway 在我实现这一目标的漫长而曲折的道路上对我的信任和鼓励,还有我的祖母 Bertie Stroud Townsend,她将永远是我的灵感源泉。最后,但当然也是最不重要的,我要感谢我的妻子 Carol,如果没有她坚定不移的支持和愿意做出许多牺牲,这一切都不可能实现。
David A, Bak Brett Patrick Baker Bryan Lee Baker Keliy Elizabeth Baker Thomas J. Balewski Allan NealBaringer Hailey Alexis Bartlett Nicole Bates Tarik Allie Bazzy Candace Renae Bean Jessica Christine Beaudoin Kimberiy Rose Beaudoin Andrew Decker Beer Kevin Roy Bennett Douglas M.H.柏林 安妮 克里斯汀·伯纳茨基 理查德·C·伯纳德 坎迪斯·安妮·伯托维克 亚历克斯·罗伯特·贝辛格 桑卡尔普 巴特纳加尔·比贾夫 拉什米·巴夫萨尔 斯蒂芬妮·安·比耶拉克 克里斯蒂娜·路易丝·伯奇 阿曼达·苏·比索利 格雷戈里·E·布莱克 尼尔·唐纳德·博切内克 莱斯特·A·布克,Jr. 克里斯托弗·戴尔·布斯 莱斯利·安·博罗梅奥 切尔西 伊丽莎白·博斯克 杰奎琳·惠特尼 布拉德利 克里斯托弗·L·布拉默 科里·迈克尔·布雷特迈耶 丹尼斯·拉蒙特·布里奇斯 托马斯·安东尼·布里拉蒂 克里斯塔·米歇尔·布罗德里特克。娜塔莎·V·布朗。肯尼斯·马丁·布伦纳 尼尔·安德鲁·布伦纳 西娅·海伦娜·莱诺·布德 杰森·P·伯加米 杰森·M·伯克 凯尔·特雷弗·伯恩斯 乔萨琳·桑迪·伯雷尔 瓦莱丽·玛丽·巴特勒
司法部长杰夫·塞申斯和司法部副部长罗德·罗森斯坦与特朗普总统、联邦调查局局长克里斯托弗·雷、联邦调查局副局长安德鲁·麦凯布和前联邦调查局局长詹姆斯·科米的通讯。请求已撤回
阿尔比恩 亚历山大 安德森 阿提卡 阿尔比恩 亚历山大 安德森 阿提卡 阿维拉 巴格斯维尔 贝德福德 比奇格罗夫 布卢姆菲尔德 巴西 布朗斯敦 剑桥城 坎内尔顿 森特维尔 丘鲁布斯科 克洛弗代尔 康纳斯维尔 卡尔弗 丹维尔 迪凯特 费尔蒙特 弗朗西斯维尔 加斯城 戈申 格林代尔 格林敦 格林伍德 黑格斯敦 霍普 欧文顿(印第安纳波利斯) 杰森维尔 柯克林 奈茨敦
201 布雷登·拉特利奇†;詹娜·麦克莱恩†;康纳·米克†;瑞安·布恩卡米诺†;马里奥·佩雷斯- Ahuatl†;苏珊·林托特†;弗朗西斯卡·哈马赫†;格蕾丝·梅†;加布里埃拉·苏尔迪卡†;埃拉·詹姆森†; Kay Annunziata† 导师:Kari Class;亚伦·金;杰森·李;昆汀·沃尔特;布雷迪·斯廷森·史密斯
执行摘要 公共服务部 (DPS) 冰雪控制计划旨在作为辛辛那提市的运营指南。它概述了资源的有效利用,确定了沟通策略,并定义了居民可以预期的服务水平。该计划旨在最大限度地提高服务质量,同时最大限度地减少对环境的影响并提高成本效益。DPS 的目标是尽可能快速、切实地清除辛辛那提道路上的冰雪。这并不意味着路面会光秃秃的,但可以通行。虽然每个冬季风暴的严重程度都无法预测,但 DPS 将继续在其资源范围内努力保持尽可能高水平的客户服务,同时平衡冰雪控制的效率。冰雪控制可占该部门预算的 33% 以上。因此,制定一个精心策划和执行的冬季运营计划是必不可少的。准备工作包括分析上一年的问题和挑战、设备准备情况、人力、应急设备租赁、培训、材料库存和当前技术。 DPS 的交通和道路运营部 (TROD) 负责协调约 3112 车道英里的冬季道路安全。这些车道英里包括主干道、桥梁、立交桥、小街、死胡同和小巷。优先路线由交通量、紧急路线的可达性、公共交通的可达性和学校的可达性决定。除雪优先计划将街道分为 67 条主要路线、97 条住宅路线和 54 条(优先级 3)皮卡车路线。辛辛那提的各个降雪事件的严重程度各不相同。在典型的冬季,辛辛那提平均积雪 20 至 25 英寸,温度为 20°F 及以上。在准备应对冰雪事件时,需要考虑多种因素,包括:
梅诺米尼河通航性研究意见和信息请求根据美国陆军工程兵团(兵团)法规 33 CFR § 329.14《通航性判定》,底特律地区监管部门(底特律地区)已启动对梅诺米尼河(密歇根州和威斯康星州两岸)及其主要密歇根州支流的通航性研究。研究区域包括底特律地区 1979 年通航性研究草案(见下文)中评估的所有水域,但不包括梅诺米尼河主航道以外的任何威斯康星州支流。研究区域如附图所示。目的:本通知旨在征求公众、联邦、州和地方机构和官员、部落的意见;以及其他利益相关方关于梅诺米尼河(密歇根州和威斯康星州两岸)及其主要密歇根州支流过去使用、现在使用和用于州际或对外贸易的可行性的意见。位置:梅诺米尼河全长 114.6 英里,是密歇根州和威斯康星州边界的一部分。这条河在威斯康星州马里内特和密歇根州梅诺米尼之间流入密歇根湖。见附图地图。背景:法规 – 根据 1899 年《河流和港口法》第 10 条(第 10 条),在美国通航水域建造建筑物或进行工作或影响美国通航水域的活动需要获得陆军部许可(33 USC 403 和 33 CFR § 322)。底特律区是五大湖和俄亥俄河分部的一部分,目前根据第 10 条对梅诺米尼河密歇根侧 1.86 英里范围内的河流行使监管权。圣保罗区是密西西比河谷区的一部分,目前在威斯康星州梅诺米尼河 2.5 英里范围内行使第 10 条监管权。工程兵团将利用目前正在进行的通航能力测定来确认或重新指定工程兵团第 10 条管辖范围的上游范围。法规 - 工程兵团对“美国可通航水域”的定义包括“受潮汐涨落影响的水域和/或目前使用或过去使用过的水域,或可能用于州际或州际运输的水域
泰晤士报商学院名誉教授 2022 – 至今 工程与公共政策名誉教授 泰晤士报商学院教授 2010 – 2022 卡内基梅隆大学电力行业中心联合主任 工程与公共政策附属教授 泰晤士报商学院副研究员 卡内基梅隆大学电力行业中心执行主任 工程与公共政策杰出服务教授iNetworks, LLC 风险投资董事总经理兼首席技术官卡内基自然历史博物馆馆长美国国家航空航天局宇航员四次航天飞机任务。其中两次任务涉及与日本和俄罗斯的合作;一次涉及两次太空行走。任务支持分公司负责人 任务控制中心灯光控制员 加州理工学院喷气推进实验室,加利福尼亚州帕萨迪纳市 光学设施科学经理 桌山天文台小组组长 光学天文学小组组长 地球与空间科学部行星科学家 哈佛大学应用科学部助理主任 行星成像计算机中心创始主任 地球与行星物理中心员工 麻省理工学院 激光博士后研究员光谱学