杰斯·B·雷伊中将于 2025 年 1 月 1 日就任 G-6 副参谋长。在此职位上,他是陆军参谋长和首席信息官的首席军事顾问,负责规划、战略、网络架构以及实施指挥、控制、计算机、通信 (C4) 和网络作战和网络,以开展全球陆军行动。雷伊中将出生于美属维尔京群岛圣托马斯。自 1983 年 9 月开始职业生涯以来,他曾成功担任士兵、准尉和军官,包括在布拉格堡的特种作战部队、本宁堡的游骑兵团和戴维营总统度假村的白宫通信局任职。他毕业于基础训练、高级个人训练、初级领导力发展课程、基础士官课程、准尉候选人学校、军官候选人学校、信号官基础课程、信号上尉职业课程、海军指挥参谋学院和陆军战争学院。他拥有韦伯斯特大学电信管理硕士学位、美国海军战争学院国家安全研究硕士学位和美国陆军战争学院战略研究硕士学位。他曾担任陆军 G-6 网络 C4 服务和集成主任 (2024);陆军未来司令部网络跨职能团队主任 (2021-2024);美国中央司令部 J6 C4 系统主任 (2019-2021);陆军网络司令部 G3 (2018-2019);陆军首席信息官/G-6 执行官 (2017-2018);第 516 信号旅指挥官,夏威夷沙夫特堡 (2015-2017);第 112 信号营 (特种作战) (空降) 指挥官、第 528 支援旅 (特种作战) (空降),北卡罗来纳州布拉格堡 (2012-2014);戴维营总统别墅白宫通信局特别任务司令部司令 (2010-2012);美国陆军特种作战司令部 (USASOC) 信号中队司令,北卡罗来纳州布拉格堡 (2007-2010);USASOC 信号中队作战官,北卡罗来纳州布拉格堡 (2005-2006);第 112 信号营 (特种作战) (空降) Alpha 连队司令,北卡罗来纳州布拉格堡 (2004-2005);USASOC 信号中队执行官,北卡罗来纳州布拉格堡 (2002-2004);USASOC 战术通信部队司令,北卡罗来纳州布拉格堡 (2000-2002);美国南方司令部作战指挥官通信官,巴拿马采石场高地 / 佛罗里达州迈阿密 (1997-2000);佐治亚州本宁堡第 75 游骑兵团(空降)第 3 营信号官(1996 年)。他获得的奖章和勋章包括杰出服役勋章、带有 1 个橡树叶簇 (OLC) 的国防卓越服役勋章、带有 2 个 OLC 的功绩勋章、带有 1 个 OLC 的铜星勋章、国防功绩服役勋章、带有 3 个 OLC 的功绩服役勋章、战斗行动徽章、跳伞大师徽章、探路者徽章、和游骑兵勋章。其他奖章包括总统服务勋章、陆军参谋勋章和通讯兵团水星铜质勋章。
他曾任美国中央司令部 J6 C4 系统主任 (2019-2021 年);陆军网络司令部 G3 (2018-2019 年);陆军首席信息官/G-6 执行官 (2017-2018 年);夏威夷州沙夫特堡第 516 信号旅指挥官 (2015-2017 年);北卡罗来纳州布拉格堡第 528 支援旅 (特种作战) (空降) 第 112 信号营指挥官 (特种作战) (空降) (2012-2014 年);白宫通信局戴维营总统别墅特别任务司令部指挥官 (2010-2012 年);北卡罗来纳州布拉格堡美国陆军特种作战司令部信号中队指挥官 (2007-2010 年);信号中队作战官,美国陆军特种作战司令部,北卡罗来纳州布拉格堡 (2005-2006);Alpha 连队指挥官,第 112 信号营特种作战(空降),北卡罗来纳州布拉格堡 (2004-2005);信号中队执行官,美国陆军特种作战司令部,北卡罗来纳州布拉格堡 (2002-2004);战术通信部队指挥官,美国陆军特种作战司令部,北卡罗来纳州布拉格堡 (2000-2002);美国南方司令部作战指挥官通信官,巴拿马采石场高地 / 佛罗里达州迈阿密 (1997-2000);以及信号官,第 75 游骑兵团(空降)第 3 营,佐治亚州本宁堡 (1996)。
di效力MRI利用水分子不同的运动来创建反映生物组织微结构的图像,以类似于虚拟活检的非侵入性方法。最初通过实现早期诊断和有效的干预措施,这种创新最初彻底改变了急性脑缺血的管理。随着时间的流逝,DI效率MRI已成为临床和研究环境中的基石,为组织完整性,结构异常和早期发现其他模式的变化提供了关键的见解。它在研究和医学方面有广泛的应用,尤其是在神经病学和肿瘤学用于癌症检测和治疗监测中。在不同的使用成像中的显着开发是二量张量成像(DTI),它允许在3D中映射脑白质连接。该技术在开放精神病学的新研究途径的同时,对脑部疾病,神经发生和衰老提供了更深入的了解。概括,扩散框架还将大脑功能和相对论理论的概念联系起来,提出意识是从大脑的4D连接组中作为5D全息构造而产生的,将神经活动与相对论的时空框架融合在一起。这些关键概念即将使用新开发的11.7T MRI扫描仪探索,从而实现了人脑的介绍成像。该扫描仪已成功捕获了大脑的体内图像前所未有的,没有观察到不良影响。这一突破为神经科学社区提供了一种强大的工具,可以以新的规模研究神经退行性和精神疾病。通过促进我们对大脑结构和功能的理解,该项目表明了超高领域MRI解决脑部疾病复杂性的潜力,从而进一步促进了科学知识和医学实践。
5 月,俄勒冈州珍宝蟹委员会 (ODCC) 资助了一项名为季节性退潮后渔具回收工作 (GREASE) 项目的试点季节内废弃渔具清除计划。自 2021 年起,所有合法渔具必须在 40 英寻深度轮廓线内,并在 5 月 1 日至 8 月 14 日期间带有季末标签。ODCC 与俄勒冈州主要港口的船只签订合同,在 5 月 1 日之后清除 40 英寻以外的废弃蟹具。ODFW 工作人员在码头会见了参与的船只,并记录了回收的蟹笼数据。然后,ODCC 工作人员联系了所有渔具所有者,并告知他们在哪里领取他们的蟹笼。今年 5 月 16 日至 6 月 26 日期间,六艘船共航行 10 次,并在 40 英寻线外的海上回收了 122 个废弃蟹笼。我们要感谢 ODCC 以及所有包租船长和船员的这些努力。我们期待在未来的计划中继续与 ODCC 和船队合作,尽早、尽可能高效地将废弃装备从水中打捞出来。
杰弗里·波奎特上校是纽约长岛人,2000 年毕业于西点军校。毕业后,他被任命为航空军官并进入飞行学校学习。他的第一份作战任务是在夏威夷斯科菲尔德兵营的第 25 航空旅。在那里,他担任黑鹰直升机飞行员和突击排长,并担任营级和旅级助理作战军官。2004 年,他被派往阿富汗支援“持久自由行动”。在第 25 步兵师首次任职后,他进入研究生院学习,并在南卡罗来纳大学完成了国际工商管理硕士 (MBA) 学位课程,并以“杰出学生奖”获得者的身份毕业。研究生毕业后,波奎特上校接管了查理连 2-25 航空团“狼群”的指挥官,这是第 25 战斗航空旅 (CAB) 内的一个突击直升机连。 2009 年,他派遣该连队支援伊拉克自由行动。卸任后,他被任命为第 25 陆军航空兵团作战司令,负责监督伊拉克北部所有陆军航空兵的日常行动。
摘要:在本演讲中,我将重点介绍用于分析和分解张量数据的快速方法。在演讲的第一部分中,我将介绍一种我们为对称张量分解提出的方法。我们为算法及其相关的非凸优化问题提供了几种保证。此外,我们从经验上观察到该方法比现有的分解算法要快大约一个数量级,并且对噪声也很强。在演讲的第二部分中,我将介绍时刻的隐式方法。多元随机变量的高阶力矩遭受维数的诅咒:条目的数量按矩的顺序为指数尺度。我们引入了一种隐式方法,该方法允许估算参数而不明确形成矩,以免避免维度的诅咒。我们使用这种方法来估计高斯混合模型的参数,获得了一种具有与最先进方法相似的计算和存储成本的方法,例如预期最大化,并为多变量变量的瞬间方法开辟了大门。最后,我将提及几种相关的方法和应用程序,包括有关使用谈话第一部分中引入的方法进行分解时刻张力张量的持续工作。
1 Alexey Dosovitskiy、Lucas Beyer、Alexander Kolesnikov、Dirk Weissenborn、Xiaohua Zhai、Thomas Unterthiner、Mostafa Dehghani、Matthias Minderer、Georg Heigold、Sylvain Gelly、Jakob Uszkoreit、Neil Houlsby “一张图片胜过 16X16 个单词:用于大规模图像识别的 Transformers” arXiv:2010.11929v2 [cs.CV] 2021 年 6 月 3 日
TSUGE Tetsuya*、SATO Yukie*2、NAKAGAWA Hitoshi* *日本开放大学,日本千叶县美滨区若叶 2-11 号,邮编 261-8586 *2 金泽星陵大学,日本石川县金泽市御所町牛石 10-1 号,邮编 920-8620
特殊讲座Tokuron 2024.4-2025.3标题:对老化说:氧化还原药理学和精密医学教学人员:Chang Chen;日期和时间:2月27日,星期四,REIWA 5:45-17:15时间和日期:15:45-17:15,2月27日(THU.),2025年:医学研究大楼3楼,医学研究大楼3(3F)语言:英语摘要:人口老化已成为世界各地的重要问题抗氧化剂已被尝试用作抗衰老干预措施但是,临床结果仍然令人失望我们最近提出了精确氧化还原的概念,“ 5R”原理是抗氧化剂药理学的关键,即正确的物种,正确的位置,正确的时间,正确的水平和正确的目标作为氧化还原医学的指南我们的最新结果进一步验证了上述概念我们发现Ca 2+ /钙调蛋白依赖性蛋白激酶IIαs-硝化作用(SNO-CAMKIIα)在学习和记忆任务过程中会增加,而在自然衰老过程中则显着降低在主要的CAMKIIαS-硝基化位点(C280/289V)处于突变的小鼠暴露的认知障碍并减弱了长期增强(LTP)缺乏SNO-CAMKIIα会增加突触I(Syni)磷酸化,从而导致过度突触前释放概率,从而导致学习和记忆反应减少,而不仅在C280/289V小鼠中发生,而且在阿尔茨海默氏病(AD)小鼠和自然衰老的小鼠中也会发生根据“ 5R”原理,我们设计了一个胶分子,该胶分子精确地增加了SNO-CAMKIIα并成功挽救了小鼠的学习和记忆障碍。我们的发现表明,SNO-CAMKIIα的下调是一种新的机制,介导了与衰老有关的学习和记忆下降,并为氧化还原药理学和精密医学提供了新的灯光。有关发言人的信息:Chang Chen教授目前是中国科学院生物物理学研究所(CAS),CAS教授和CAS大学教授和Biomacromolecules国家实验室副主任(2012-20223)的首席研究员。她的主要研究兴趣是一氧化氮和s-硝酸(YL)ation和其他氧信号转导中的其他硫醇修饰。老化和相关疾病中的氧化还原调节;中药的机制。* *生体反応病理学