“这场战斗的胜利归功于军队积极运用军校中传授的、包含在标准战地手册中的技术和原则。这里引用其中的几项只是为了证明,这些技术和原则基本上是合理的,如果应用得当,将击败任何敌军。”
· BrokerCheck 报告包含哪些内容? · 个人经纪人的 BrokerCheck 报告包括就业历史、专业资格、纪律处分、刑事定罪、民事判决和仲裁裁决等信息。经纪公司的 BrokerCheck 报告包括有关公司概况、历史和运营的信息,以及上述许多相同的披露事件。 · 请注意,BrokerCheck 报告中包含的信息可能包括有争议、未解决或未经证实的未决诉讼或指控。最终,这些诉讼或指控可能会以有利于经纪人或经纪公司的条件解决,或者通过谈判达成和解,而无需承认或发现任何不当行为。 · 这些信息从何而来? · BrokerCheck 中包含的信息来自 FINRA 的中央注册存管处 (CRD®),是以下内容的组合:
6 Barseghyan, MG;Mughnetsyan, VN;Perez,;Kirakosyan, AA;Laroze, D 杂质对强 THz 激光场下 GaAs/Ga1-xAlxAs 量子环中 Aharonov-Bohm 振荡和带内吸收的影响 PHYSICA E-低维系统与纳米结构 卷:111 页:91-97 出版日期:2019 年 7 月,DOI:10.1016/j.physe.2019.03.003 WOS:000465001500012 7 Chakraborty, Tapash;Manaselyan, Aram; Barseghyan, Manuk,在 ZnO 界面处点环纳米结构中电子电荷和自旋分布的有效调整,PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES 卷:99 页数:63-66 出版日期:2018 年 5 月,DOI:10.1016/j.physe.2018.01.013,WOS:000428346500009 8 Baghramyan, Henrikh M.;Barseghyan, Manuk G.;Kirakosyan, Albert A.; Ojeda, Judith H., (Bragard, Jean, Laroze, David 通过太赫兹激光场对双量子环各向异性特性的建模,SCIENTIFIC REPORTS 卷:8 文章编号:6145 出版日期:2018 年 4 月 18 日,DOI:10.1038/s41598-018-24494-w,WOS:000430279300003 9 Chakraborty, Tapash;Manaselyan, Aram;Barseghyan, Manuk;Laroze, David 单量子环中电子态的可控连续演化 PHYSICAL REVIEW B 卷:97 期:4 文章编号:041304 出版日期:2018 年 1 月 31 日,DOI:10.1103/PhysRevB.97.041304, WOS:000423656600001 10 Baghramyan, Henrikh M.; Barseghyan, Manuk G.; Laroze, David 强太赫兹辐射下横向耦合量子环的分子光谱 SCIENTIFIC REPORTS 卷:7 文章编号:10485 出版日期:2017 年 9 月 5 日,DOI:10.1038/s41598-017-10877-y,WOS:000409309300073 11 Chakraborty, Tapash;Manaselyan, Aram;Barseghyan, Manuk ZnO 界面处人造原子的相互作用驱动的独特电子态 JOURNAL OF PHYSICS-Condensed MATTER 卷:29 期:21 文章编号:215301 出版日期:2017 年 6 月 1 日,DOI: 10.1088/1361-648X/aa6b97,WOS:000400092400001 12 查克拉博蒂,塔帕什;马纳塞良,阿兰; Barseghyan,Manuk,ZnO 量子环中相互作用电子的不规则阿哈罗诺夫-玻姆效应《凝聚态物理学杂志》卷:29 期:7 文章编号:075605 发布时间:2 月 22 日,DOI:10.1088/1361-648X/aa5168, WOS:000391964700003 13 Barseghyan,MG;基拉科相,AA; Laroze, D., 激光驱动的二维量子点和量子环中的带内光学跃迁光通信卷:383 页:571-576 出版日期:2017 年 1 月 15 日,DOI:10.1016/j.optcom.2016.09.037,WOS:000386870700088 14 Laroze, D.; Barseghyan, M.; Radu, A.; (Kirakosyan, AA 二维量子点和量子环中的激光驱动杂质态 PHYSICA B-CONDENSED MATTER 卷:501 页:1-4 出版日期:2016 年 11 月 15 日,DOI:10.1016/j.physb.2016.08.008,WOS:000386815500001 15 Barseghyan, MG,单个量子环中的带内光吸收:静水压力和强激光场效应 OPTICS COMMUNICATIONS 卷:379 页:41-44 出版日期: 2016年11月15日 DOI: 10.1016/j.optcom.2016.05.065, WOS:000378770600008 7 Manaila-Maximean, D.; Cirtoaje,C.;达尼拉,O.; Donescu,D.新型胶体系统:磁铁矿-
同行评审出版物 [1] E. Mohammadreza、J. Pacheco、W. Li、J. Lee Hu、H. Chen。“使用离散动作空间中的强化学习对静态恶意软件检测器进行二进制黑盒攻击。” IEEE S&P 深度学习和安全研讨会。2021 年 5 月。 [2] SJ Lee、D. Suri、P. Somani、CL Dean、J. Pacheco、R. Stoner、I. Perez-Arriaga、JW Fisher III、J. Taneja。“概率电力需求预测如何加速清洁可靠电力的普遍使用。” 能源促进经济增长。2021 年 [3] S. Zheng、DS Hayden、J. Pacheco、J. Fisher III。“具有可变成本结构的顺序贝叶斯实验设计。”神经信息处理系统进展。 2020 年。[4] DS Hayden、J. Pacheco、J. Fisher III。“使用李群动力学进行非参数对象和部件建模。”计算机视觉与模式识别会议。2020 年。[5] J. Belden、MM Mansoor、A. Hellum、SR Rahman、A. Meyer、C. Pease、J. Pacheco、S. Koziol 和 TT Truscott。“视觉如何控制密集骑行车队的集体行为。”皇家学会界面杂志。2019 年。[6] J. Pacheco 和 J. Fisher III。“序列决策的变分信息规划。”人工智能与统计国际会议。2019 年。[7] S. Zheng、J. Pacheco、J. Fisher III。“一种稳健的序列信息理论规划方法。”机器学习国际会议。 2018。[8] D. Milstein、J. Pacheco、L. Hochberg、J. Simeral、B. Jarosiewicz、E. Sudderth。“皮质内脑机接口的多尺度半马尔可夫动力学。”神经信息处理系统进展。2017。[9] J. Pacheco 和 EB Sudderth。“蛋白质、粒子和伪最大边际:一种子模块化方法。”国际机器学习会议。2015。[10] J. Pacheco、S. Zuffi、MJ Black 和 EB Sudderth。“保留模式和消息
先前的职责包括:医疗排长,1-12 CAV,1CD,FT Hood,TX;执行官,C 连,第 15 FSB,1CD;S2/3,第 15 FSB,1CD;S4,师支援司令部,1CD;支援作战维护官,第 201 FSB,1st 1ID;指挥官,C 连,第 201 FSB,1ID,科索沃蒙蒂思营,联合卫士和玫瑰兵营行动,菲尔塞克,德国;研究生,美国陆军-贝勒大学卫生保健管理研究生课程,FT Sam Houston,TX;卫生保健行政住院医师,第 121 GH,第 18 医疗司令部,韩国首尔;临床支援部,第 121 GH 负责人;AMEDD 上尉职业课程作战官和小组讲师,FT Sam Houston,TX;威斯巴登陆军机场第 421 军事旅执行官,并部署至伊拉克巴拉德联合基地的伊拉克自由行动;五角大楼 OTSG HQDA 作战参谋;科罗拉多州卡森堡第 43 特种部队营、第 43 支援旅指挥官;国际安全援助部队区域司令部 – 南方/第 4 步兵师后勤助理参谋长,并部署至阿富汗坎大哈机场的持久自由行动;弗吉尼亚州福尔斯彻奇 USAMEDCOM 和 OTSG HQDA G35 计划司司长;弗吉尼亚州五角大楼 HQDA OTSG 和 CG USAMEDCOM 外科医生总监执行官;韩国汉弗莱斯营第 2 步兵师支援旅指挥官;韩美联合师第 2 步兵师参谋长;德克萨斯州胡德堡第 1 医疗旅指挥官。他最近的职务是政策和部队整合主任兼 G-357、HQDA OTSG 和 USAMEDCOM 副参谋长。
使他与自己的文化和环境建立了深厚的联系。除了是一位经验丰富的领导者之外,上个月我们失去他时,他还是一个相对年轻的人。我喜欢看到杰罗米对他的部落所取得的进步感到自豪和热情。有一次,他带我参观了部落的新医疗设施,对他来说,部落成员能够在优质的环境中得到护理,他们拥有所有美国人应得的尊重和尊严,这一点很重要。他不仅为设施是一流的而感到自豪,而且为人们将获得的护理也是一流的而感到自豪。杰罗米还是部落条约权利的热情倡导者。Jeromy 认为,作为部落主席,他不仅要为今天的渔民或象拔蚌捕捞者发声,还要为 Port Gamble 的 S’Klallam 部落成员的后代争取权利。我无法告诉你,在过去 10 年里,我与海军进行了多少次讨论,在这些讨论中,Jeromy 坚信他有责任确保他的人民能够享受条约中承诺的权利。去年,我参观了 Port Gamble S’Klallam 部落正在进行的一个新住宅开发项目,Jeromy 笑容满面地解释说,这不仅仅是对庇护所的投资;这是对家庭的投资。他说:想想这对我们的部落成员意味着什么。杰罗米经常告诉我,他为他的部落领袖和我们国家的领袖祈祷,他祈求力量和智慧,杰罗米每天都展现这些。对于最爱他的人来说,杰罗米是一个充满爱心的家庭男人,他的妻子托尼、他们的孩子萨曼莎和雅各布以及他的兄弟查德和科里都健在。在音乐剧《汉密尔顿》中,他们提出了一个问题:什么是遗产?
我们展示了三种类型的变换,它们在临界状态下建立了厄米和非厄米量子系统之间的联系,可以用共形场论 (CFT) 来描述。对于同时保留能量和纠缠谱的变换,从纠缠熵的对数缩放中获得的相应中心电荷对于厄米和非厄米系统都是相同的。第二种变换虽然保留了能量谱,但不保留纠缠谱。这导致两种类型的系统具有不同的纠缠熵缩放,并导致不同的中心电荷。我们使用应用于自由费米子情况的膨胀方法来展示这种变换。通过这种方法,我们证明了中心电荷为c = −4的非厄米系统可以映射到中心电荷为c = 2的厄米系统。最后,我们研究了参数为φ →− 1 /φ的斐波那契模型中的伽罗瓦共轭,其中变换既不保持能量谱也不保持纠缠谱。我们从纠缠熵的标度特性证明了斐波那契模型及其伽罗瓦共轭与三临界Ising模型/三态Potts模型和具有负中心电荷的Lee-Yang模型相关联。