使用瑞典作为研究案例,本文探讨了对风和核能的两极分化观点,这是两种低碳能量选择在政治上引起了争议。在大规模的调查中(n = 5200),对风和核能的一般态度以及对人们家附近的项目的一般态度。这项研究表明,瑞典能源偏好的两极分化,在世界观,政治取向,环境关注以及对风和核能的抵抗或抵抗的支持之间建立了牢固的关联。该研究得出结论,当风能或核能在人们的家附近建造时,对两种能源方案的支持都会减少,但也表明,对于具有强大的棕褐色(传统,专制,民族主义)价值观和右派政治意识形态的个人而言,接近效应尤其强大。文章认为,出于政治动机的推理可能解释了态度的两极分化,但是当要求人们判断靠近它们的潜在能源基础设施时,这种影响似乎变得不那么重要。
量子技术的发展和广泛应用高度依赖于分配纠缠的通信信道的容量。空分复用 (SDM) 增强了传统电信中的数据信道传输容量,并有可能利用现有基础设施将这一理念转移到量子通信中。在这里,我们展示了在 411 米长的 19 芯多芯光纤上进行偏振纠缠光子的 SDM,该光纤可同时通过多达 12 个信道分配偏振纠缠光子对。多路复用传输的质量由高偏振可见性和每对相反纤芯的 Clauser-Horne-Shimony-Holt (CHSH) Bell 不等式违反证明。我们的分配方案在 24 小时内表现出高稳定性,无需任何主动偏振稳定,并且可以毫不费力地适应更多信道。该技术增加了量子信道容量,并允许基于单个纠缠光子对源可靠地实现多用户量子网络。
摘要:在这项工作中,我们研究了偶氮Pazo(Poly [1- [4-(3-羧基-4-羟基苯基唑))苯磺胺硫胺的薄膜中记录的衍射光栅的极化特性。使用两个四分之一波板,将SLM的每个像素的相位延迟转换为线性偏振光的方位角旋转。从样品的偶氮聚合物侧记录时,使用原子力显微镜观察出明显的表面浮雕幅度。相比之下,样品的底物记录允许减少表面浮雕调制和获得极化光栅,其特性接近理想的光栅,并以两个正交圆形极化记录。我们的结果证明,即使在四像素的光栅期间也可以实现这一目标。
目的:使用小体积电离室进行扁平过滤器(FF)和扁平过滤滤器(FFF)varian Truebeam stx线性加速器的扁平过滤器(FFF)横梁,研究小型和大型电离室的离子重组(K S)和极性校正因子(KPOL)。材料和方法:所有读数均以100厘米源到DMAX的表面距离(SSD)和10厘米深度的PTWBeamScan®水幻影进行测量,为6、10、10、15、6FFF和10FFF MEGA电压光光束,平方场的最大剂量速率为0.5×0.5cm2至30×30 cm2。分别雇用了两个离子腔室,例如PTW Semiflex 3d 31121和农民室30013,分别为0.07cc和0.6cc。根据国际原子能局技术报告系列(IAEA TRS 398)的第398号协议,从读数中计算了校正因子。用“两压方法”(TVM)获得的离子重组值用1/v对1/Q曲线(Jaffé-plot)验证了所有束能。结果:从结果来看,离子重组校正因子(K S)从未超过1.032,此外,Jaffé-Plot的结果与TVM值非常吻合(高达0.3%),除了方形0.5×0.5×0.5cm 2和1×1cm 2(最高8%)。KS值完全独立于所有光束能的场大小。KPOL值随场大小而独立于2×2cm 2的平方场差异,在2×2cm 2至10×10cm 2之间的平方场2×2cm 2中,绘图几乎显示了所有辐射条件的直线。对于所有平方场(0.5×0.5cm 2和1×1cm 2除外),FFF梁的K S和KPOL值分别差异为最大0.6%和0.1%。结论:小场剂量计的饱和电压大于剂量计的工作电压。小场的KS和KPOL值与标准字段(参考字段)不同。使用标准“两压方法”确定的KS可以充分考虑高剂量率FFF梁的高剂量率FFF梁。从FFF梁获得的结果不会显着偏离扁平的梁。平方场的不适当读数0.5×0.5cm 2和1.0×1.0cm 2可能是由于缺乏剂量计响应,这是由于缺乏侧向带电粒子平衡和腔室平均效果的结果。
摘要:宽带长波长红外(LWIR)光吸收体在热发射与成像、红外伪装以及废热和生物热能利用等方面有着重要的应用。然而,宽带LWIR光吸收体的实际应用需要低成本、易于制造且厚度有限的大面积结构。本文报道了一种采用梯度折射率策略设计和制造的超薄、宽带、全向、偏振无关的LWIR光吸收体,该吸收体由阳极氧化铝和高掺杂Si组成。宽带光吸收体在8 – 15 μm波长范围内的平均吸收率高于95%,并且具有宽的入射角和偏振公差。在8 – 15 μm波长范围内,95%以上的光能量被吸收。
椭圆法是一种成熟的实验方法,其根部回到了现代光学元件本身的早期阶段。它通常是由保罗·德鲁德(Paul Drude)在19世纪的最后十年中发明的,但是在Drude开始工作之前已经采用了类似的技术。自1940年代以来使用的实际术语“椭圆法”正在使用。有趣的是,它始于描述生物应用的工作。值得注意的是,这是在一个现代实心相,尤其是半导体材料的现代物理学正在迅速扩展。椭圆形即将受到固态和表面研究界的欢迎,因为研究表面,界面和薄层的能力是必不可少的。椭圆法是一种从数值计算和建模概念中受益匪浅的方法。固态物理和椭圆法之间的连接是科学和技术中自我强化创新周期的一个例子。尤其是在计算能力wasaccompaniedwithanincreasefellipsometryresearch和社区的迅速扩展的情况下,大大增加了。椭圆法 - 微电子和数字技术。反之亦然,它可以开发更好的电子设备。如果没有椭圆计的开发及其数十年前的许多折叠应用,那是数字时代的基础将不存在的硬件。椭圆法是对反射实验的偏振法实现。所有偏振技术都取决于
情感和感知紧密地交织在一起,因为情感经历通常是由于对感官信息的评估而产生的。尽管如此,大脑是否使用特定于感官代码还是以更抽象的方式编码情绪实例尚不清楚。在这里,我们通过测量在典型发达的,先天性的盲人和先天性聋哑参与者的全长电影和大脑活动中收集的情绪等级之间的关联来回答这个问题。情感实例被编码在一个庞大的网络中,其中包含感觉,前额叶和颞皮层。在该网络中,腹侧前额叶皮层在情绪上存储了独立于情态和前感的感觉体验的分类表示,而后颞上皮皮层则使用Ab-ratact代码映射价值。感觉体验不仅仅影响大脑在超大区域之外如何组织情感信息,这表明存在一个脚手架来代表情绪状态,在发展过程中,感官输入形式的功能。