随着纳米级制造技术的高级,光子综合电路的速度和能源效率获得了流动性。一个主要的挑战涉及纤维和纳米光学设备之间的耦合。一个有希望的解决方案是使用光栅耦合器,它可以在芯片上的任何位置正交近似光。虽然已经在SOI平台上牢固地建立,但近年来,它们在诸如罪恶之类的低指数平台上也变得至关重要。这个相对较新的材料平台的特征是其低传播损失和出色的功率处理能力,使其对广泛的应用具有吸引力。虽然标准的光栅耦合器有效地将仅具有一个极化的光,但是无论其极化如何,极化的拆卸光栅耦合器都可以将光线磨合。后者尚未在罪恶平台上实现,使他们的调查特别值得。本文使用FDTD仿真确定了关于sin上2D光栅耦合器设计的操作参数。模拟的最大耦合效率为51。8%,无需使用任何其他返回反射器。此外,还探索了sin上极化的光栅耦合器的发展,其中3D模拟表明这项工作是可以实现的。
现在,量子计算机、量子网络和安全量子加密通信等研究领域十分庞大。这些发展背后的一些重要突破是由今年的诺贝尔物理学奖得主实现的。这三位获奖者都利用了量子力学中一种名为纠缠的重要现象。纠缠粒子具有共同的量子特性。量子力学认为,粒子在被测量之前可以具有未定义的特性。它们不是固定的状态,而是所有可能性的组合,每种可能性都有一定的被测量概率。测量之后,只剩下一种可能性。例如,纠缠光子(光粒子)可能彼此平行极化,即使在测量之前这种极化的方向尚不清楚。测量这种纠缠对中的一个光子可以确定其极化的平面。同时,这也决定了对另一个粒子的测量结果,即使它距离数百公里。
图 1:MRAM 示意图。(a) STT-MRAM 单元,(b) 和 (c) 具有电流诱导平面外和平面内自旋极化的 SOT-MRAM 单元。(b) 和 (c) 仅显示了 SOC 层顶面附近的自旋极化。
Simons天文台的小孔望远镜的开发和表征,用于高精度测量宇宙微波背景极化(Simons天文台实验性小孔望远镜的开发和评估,用于对宇宙微海背景辐射的最高光谱极化的观测)
由于自旋极化受 Heusler 合金元素组成的影响,因此表征和优化 Heusler 合金的原子组成以实现最高自旋极化非常重要。但目前用于确定半金属自旋极化的方法要么耗时,要么仅提供间接测量。
手性2D钙钛矿作为圆形极化的光致发光材料引起了极大的关注,但是这些材料通常在环境条件下表现出较弱的CPL。几项研究表明,使用强的外部磁场或低温可以增强CPL的程度。在这里,我们报告了一种通过使用极高的高压来调整手性2D钙钛矿的圆两极化的光致发光的方法。(S-和R-MBA)2 PBI 4钙钛矿表现出良好的光学可调性,其压力在PL波长,强度和带隙方面。极化分辨的光致发光测量表明,在环境压力下,CPL的程度从近乎零增加到8.5 GPA时高达10%。adxrd和拉曼结果表明,在施加压力时,结构失真和增加的层间耦合是造成增强性手性的。我们的发现提供了一种调整CPL材料并显示下一代CPL设备中潜在应用的新方法。
摘要 - 自爱因斯坦(Einstein)在1905年提出了光子概念以来,光子波颗粒二元性的谜团一直没有印象深刻地解释。本文建立了一个基于字段物质的单个光子的经典几何结构模型,教育一个用于光子大小的公式。假设只有两种右手和左手圆形极化的光子,并提出旋转的光子极化的频率是其自旋频率。它将光子的波动归因于其自旋运动,并将粒子样归因于其翻译运动。从光子粒子的点而不是波视图中重新分析了Young的双缝干扰和偏振器实验,从而提供了合理的机制。它定义了光子的相位速度和组速度。它对光和经典电磁波的量子粒子进行了统计和一致的理解。显然,这种精确定义的概念模型是合理,客观且易于接受的古典物理学家。
我们研究了倾斜的Weyl半准薄膜的表面等离子体极化的分散体和光谱。倾斜的Weyl半含量在Weyl节点处具有倾斜的Weyl锥,并用封闭的费米表面和I型II分类为I型,并带有过时的Weyl锥和开放的费米表面。我们发现,即使在没有外部磁场的情况下,该系统的表面等离子体极化的分散也是非偏置的。此外,我们证明了倾斜参数对控制这种非进取心具有深远的作用。我们揭示了II型Weyl半分化的薄膜以负基组速度托有表面等离子体极化模式。此外,我们表明该结构的角光谱是高度不对称的,并且在吸收性和反射率中,这种角度不对称性在很大程度上取决于倾斜的Weyl semimimetal的倾斜参数。这些令人兴奋的功能建议在光学传感设备,光学数据存储和量子信息处理的设备中使用倾斜的Weyl半学。
世界正变得越来越“多极化”,这已成为外交政策辩论的常识。尽管当今世界已经多极化的程度尚有争议,但世界的“多极化”却是事实:一方面,权力正在向更多有能力影响全球关键问题的行为者转移。另一方面,世界正经历着许多国家之间和国家内部日益加剧的两极分化,这阻碍了各国采取联合措施应对全球危机和威胁。
非共线反铁磁体 (AFM) 是一个令人兴奋的新平台,可用于研究本征自旋霍尔效应 (SHE),这种现象源于材料的能带结构、贝里相位曲率和对外部电场的线性响应。与传统的 SHE 材料相比,非共线反铁磁体的对称性分析不禁止具有 ̂ x、̂ z 极化的非零纵向和平面外自旋电流,并预测电流方向为磁晶格的各向异性。本文报道了在非共线状态下唯一生成的 L1 2 有序反铁磁 PtMn 3 薄膜中的多组分平面外自旋霍尔电导率 𝝈 x xz 、𝝈 y xz 、𝝈 z xz。最大自旋扭矩效率 (𝝃 = JS / J e ≈ 0.3) 明显高于 Pt (𝝃 ≈ 0.1)。此外,非共线状态下的自旋霍尔电导率表现出预测的取向相关各向异性,为具有可选自旋极化的新设备开辟了可能性。这项工作展示了通过磁晶格进行对称性控制作为磁电子系统中定制功能的途径。